tensorflow是Google开发的神经网络工具。安装省略。
本文是以两层神经网络搭建为例。
神经网络的实现过程:
1、准备数据集,提取特征,作为输入喂给神经网络(Neural Network,NN)
2、搭建NN结构,从输入到输出(先搭建计算图,再用会话执行)
3、大量特征数据喂给NN,迭代优化NN参数
4、使用训练好的模型预测和分类
下图就是代码描述的一个神经网络的计算图
算了直接附代码吧,不想写了注释里都有
#coding:utf-8
#0导入模块,生成模拟数据集
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8
seed = 23455
########################训练数据集准备#########################
#利用随机函数和seed产生随机数
#这里只是为了生成一些数据用来输入
rng = np.random.RandomState(seed)
#随机数返回32行2列的矩阵,表示32组 体积和重量 作为输入数据集
X = rng.rand(32,2)
#从X这个矩阵中取出1行,判断如果和小于1 Y赋值1 如果和不小于1 Y赋值0
#Y作为X的数据集label(正确答案)与X数据集一一对应
Y = [[int(x0 + x1 < 1)] for (x0, x1) in X]
print "X:\n",X
print "Y:\n",Y
########################两层神经网络框架#########################
#1-定义神经网络的输入、参数、和输出,定义前向传播过程
#输入 tf.placeholder(数据类型,数据格式) 占位用
x = tf.placeholder(tf.float32, shape = (None, 2))
y_ = tf.placeholder(tf.float32, shape = (None, 1))
#初始化权重w1,w2
#矩阵类型w1为第一层网络权重,矩阵形状2行3列,与x卷积后到达第一层(a) 3个数据
#矩阵类型w2为第一层网络权重,矩阵形状3行1列,与a卷积后到达输出层 输出1个数据y
w1 = tf.Variable(tf.random_normal([2,3], stddev = 1, seed = 1))
w2 = tf.Variable(tf.random_normal([3,1], stddev = 1, seed = 1))
#前向传播方法
a = tf.matmul(x,w1)
y = tf.matmul(a,w2)
#2-定义神经网络的损失函数及反向传播方法
#这里用y与y_的均方为损失函数
loss = tf.reduce_mean(tf.square(y-y_))
#梯度下降
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
#moment下降
#train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(loss)
#adam下降
#train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
#3生成会话,训练steps轮
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
#输出未训练过的参数取值
print "w1:\n", sess.run(w1)
print "w2:\n", sess.run(w2)
print "\n"
#训练模型
STEPS = 3000
for i in range(STEPS):
#每次喂BATCH_SIZE(8)组数据
start = (i*BATCH_SIZE) % 32
end = start + BATCH_SIZE
#进行反向传播
sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]})
#每500轮打印一次损失函数的值
if i % 500 == 0:
total_loss = sess.run(loss, feed_dict = {x:X,y_:Y})
print("After %d training step(s),loss on all data is %g"%(i,total_loss))
#输出训练后的参数取值
print "\n"
print "w1:\n",sess.run(w1)
print "w2:\n",sess.run(w2)
print sess.run(y,feed_dict = {x:[[0.1,0.2],[0.5,0.6]]})