0.1 什么是神经网络?
神经网络是由简单处理单元构成的大规模并行分布式处理器,天然地具有存储经验知识和使之可用的特性。神经网络在两个方面与大脑相似:
1 、神经网络是通过学习过程从外界环境中获取知识的。
2、互联神经元的连接强度,即突触权值,用于存储获取的知识。
神经网络的优点
1、非线性
2、输入输出映射:每个样例由一个唯一的输入信号和相应的期望响应。
3、自适应性:神经网络具有调节自身突触权值以适应外界环境变化的固有能力。
4、证据相应。不仅提供选择哪一个特定模式的信息,还提供关于决策的置信度信息。
5、上下文信息。
6、容错性。
7、VLSI实现:超级大规模集成。
8、分析和设计的一致性:即通用性好
9、神经生物类比
0.2人类大脑
刺激➡️感受器⬅️ ➡️神经网络⬅️ ➡️效应器 ➡️响应
0.3 神经元模型
神经元模型的三种基本元素:
1、突触或连接链集,每一个都由其权值或者强度作为特征。
2、加速器,用于求输入信号被神经元的相应突触加权的和。
3、激活函数,用来限制神经元输出振幅
激活函数的类型
1、阀值函数。如果神经元的诱导局部域非负,则输出为1,否则为0。
2、sigmoid函数。
0.4被看作有向图的神经网络
规则1、信号仅仅沿着定义好的箭头方向在连接上流动
规则2、节点信号等于经由连接进入的有关节点的所有信号的代数和。
规则3、节点信号沿每个外向连接向外传递,此时传递对的信号完全独立于外向连接的传递函数。
0.5反馈
这个反馈与控制工程中的一致,不再赘述。
0.6网络结构
1、单层前馈网络
2、多层前溃网络
3、递归网络(有反馈)
0.7知识表示
0.8学习过程
有教师学习和无教师学习