TensorFlow学习(3)——Fetch和Feed的使用

import tensorflow as tf

# ===========Fetch============
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)

add = tf.add(input2, input3)
mul = tf.multiply(input1, add)
sub = tf.subtract(input3, input1)

with tf.Session() as sess:
    # 所谓的Fetch就是同时运行多个op
    result = sess.run([add, mul, sub])
    print(result)


# ===========Feed============
input4 = tf.placeholder(tf.float32)
input5 = tf.placeholder(tf.float32)

mul2 = tf.multiply(input4, input5)

with tf.Session() as sess:
    # 所谓的Feed就是在执行的时候才以字典的形式传入值
    result = sess.run(mul2, feed_dict={input4:[7.0],input5:[2.0]})
    print(result)

结束线/

欢迎大家加入Q群讨论:463255841

结束线/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值