一、Region的定义和合法性检查
在Android系统中,定义了Region的概念,它代表屏幕上的一个区域,它是由一个或多个Rect组成的,代码位于frameworks/native/libs/ui/Region.cpp。而Rect则代表屏幕上的一个方形区域,这个区域可能是不可见的,部分可见或者完全不可见的。从代码实现的角度来看Region的实现,它拥有一个私有的数据成员变量:mStorage,它的类型为Vector<Rect>:
1. mStorage是一个有序数组,数组元素类型为Rect,除了包含构成Region区域的Rect外,还额外地包含一个元素,它就是这块区域的边界。
2. 如果Region只是一个简单的方形区域,则mStorage只包含这个Rect类型的元素。
从上述两点可知,mStorge的大小永远不可能为2,要想知道某个区域的边界大小,只需返回mStorage的最后一个元素。
3. Rect与Region的关系是is-a关系,反之则不成立。
- inline bool isEmpty() const { return getBounds().isEmpty(); }
- inline bool isRect() const { return mStorage.size() == 1; }
- inline Rect getBounds() const { return mStorage[mStorage.size() - 1]; }
- inline Rect bounds() const { return getBounds(); }
接下来研究的话题是Region的合法性。由于Region本身是由一系列Rect组成的,所以,首先,构成的Rect本身必须是合法的。其次,构成的Rect必须以Y方向和X方向排序,Y方向优先排序。这里引入另一个概念Span,它也是一个区域的概念,也是由一个或多个Rect组成,可以认为它是一种特殊的Region, 其本身也是构成Region的一部分,事实上,一个Region可以看成是由许多Span构成的。不过这些构成Span的Rect必须在Y方向上,top和bottom值与其他的Rect相同,即Y方向上不能重叠,在X上方向,left与right之间的覆盖的区域不能与其他的Rect之间有重叠。基于上述的描述,要检查一个Region是否合法,就要对上述的一些要求做检查,我们可以看Region的validate()函数,它实际上就是这样做的:
1. 首先检查构成Region的Rect本身的合法性。
- ...
- if (cur->isValid() == false) {
- ALOGE_IF(!silent, "%s: region contains an invalid Rect", name);
- result = false;
- }
- if (cur->right > region_operator<Rect>::max_value) {
- ALOGE_IF(!silent, "%s: rect->right > max_value", name);
- result = false;
- }
- if (cur->bottom > region_operator<Rect>::max_value) {
- ALOGE_IF(!silent, "%s: rect->right > max_value", name);
- result = false;
- }
- ...
2. 接下来,检查这些Rect是否是有序的。
- if ((*prev < *cur) == false) {
- ALOGE_IF(!silent, "%s: region's Rects not sorted", name);
- result = false;
- }
3. 然后就是检查Span的合法性
- if (cur->top == prev->top) {
- if (cur->bottom != prev->bottom) {
- ALOGE_IF(!silent, "%s: invalid span %p", name, cur);
- result = false;
- } else if (cur->left < prev->right) {
- ALOGE_IF(!silent,
- "%s: spans overlap horizontally prev=%p, cur=%p",
- name, prev, cur);
- result = false;
- }
- } else if (cur->top < prev->bottom) {
- ALOGE_IF(!silent,
- "%s: spans overlap vertically prev=%p, cur=%p",
- name, prev, cur);
- result = false;
- }
4. 当然,也要检查最后一个元素是不是该区域的边界。
- if (b != reg.getBounds()) {
- result = false;
- ALOGE_IF(!silent,
- "%s: invalid bounds [%d,%d,%d,%d] vs. [%d,%d,%d,%d]", name,
- b.left, b.top, b.right, b.bottom,
- reg.getBounds().left, reg.getBounds().top,
- reg.getBounds().right, reg.getBounds().bottom);
- }
5. 最后,要检查一种不可能出现的情况,即mStorage的大小为2。
- if (reg.mStorage.size() == 2) {
- result = false;
- ALOGE_IF(!silent, "%s: mStorage size is 2, which is never valid", name);
- }
到此为上,Region合法性的讨论就结束了。
最后总结一下:前面主要引入三个概念: Rect, Span, Region,它们之间的区别如下 :
二、Region的Boolean操作
Region的Boolean操作总体主要分主要有如下几种:
- enum {
- op_nand = region_operator<Rect>::op_nand,
- op_and = region_operator<Rect>::op_and,
- op_or = region_operator<Rect>::op_or,
- op_xor = region_operator<Rect>::op_xor
- };
下面我们主要以op_or操作为情景,分析Region如何执行这些boolean操作的。显然,Region可以与Region或Rect之间进行上述的boolean操作。当然,执行这些操作后,Region可能会变得不合法了,需要进行调整使新的Region变为合法的,整个过程就会伴随着怎样将Region从不合法的状态调整成合法的状态,这个过程会涉及到Rect的合并或分解。
下面我们将分析boolean_operation(...)函数的执行过程,因为所有的这些boolean操作都是基于此函数实现的。我们直接进入关键代码段:
- size_t lhs_count;
- Rect const * const lhs_rects = lhs.getArray(&lhs_count);
- region_operator<Rect>::region lhs_region(lhs_rects, lhs_count);
- region_operator<Rect>::region rhs_region(&rhs, 1, dx, dy);
- region_operator<Rect> operation(op, lhs_region, rhs_region);
- { // scope for rasterizer (dtor has side effects)
- rasterizer r(dst);
- operation(r);
- }
我们将上述分为三步:
1. region_operator<Rect> operation(op, lhs_region, rhs_region);
这一步是初始化,为第二步做准备。传递了两个信息:Region进行的什么操作,以及操作的两个Region对象,这两个Region对象的引用被传递给了Spanner对象。region_operator这个类定义两个Region之间的boolean操作的步骤,其中定义的内部类region_rasterizer主要作用就是将一个Rect加入到当前的Region中,其中会涉及到Span与Rect之间的合并。
- class region_rasterizer {
- friend class region_operator;
- virtual void operator()(const RECT& rect) = 0;
- public:
- virtual ~region_rasterizer() { };
- };
2. rasterizer r(dst);
类rasterrizer是Region类中内部类,它继承自上面提到的region_rasterizer类。主要实现了其中的operator()(const RECT& rect)虚函数。它对Region进行了一些初始化,该Region将是执行boolean操作后的结果Region。
- rasterizer(Region& reg)
- : bounds(INT_MAX, 0, INT_MIN, 0), storage(reg.mStorage), head(), tail(), cur() {
- storage.clear();
- }
3. operation(r);
这步进入了实际的操作过程,将执行如下的函数:
- void operator()(region_rasterizer& rasterizer) {
- RECT current;
- do {
- SpannerInner spannerInner(spanner.lhs, spanner.rhs);
- int inside = spanner.next(current.top, current.bottom);
- spannerInner.prepare(inside);
- do {
- TYPE left, right;
- int inside = spannerInner.next(current.left, current.right);
- if ((op_mask >> inside) & 1) {
- if (current.left < current.right &&
- current.top < current.bottom) {
- rasterizer(current);
- }
- }
- } while(!spannerInner.isDone());
- } while(!spanner.isDone());
- }
在详细分解这个函数的执行过程之前,我们简单描述下Spanner和SpannerInner这两个类的作用。Spanner相当于Region内部Span集合的迭代器,它会从Y轴增长的方向逐个迭代Span;而SpannerInner则相当于某个Span的内部迭代器,它会从X轴增长的方向迭代包含于这个Span内的Rect对象。
下面, 描述这个函数的执行步骤:
1. int inside = spanner.next(current.top, current.bottom);
这步首先会决定当前迭代的Span,以current.top, current.bottom来指定当前所处的Span。另外,也会根据inside得到两个Region之间的相对位置信息,其实质是比较两个Region的第一个Span的相对位置关系:首先,看它们的top值,然后是bottom值。如果这两个Region在Y轴方向有重叠,就会发生Span的在Y轴的分解,并通过更新current.top, current.bottom记录下当前所处的新Span。
2. spannerInner.prepare(inside);
根据上一步得到的两个Region的相对位置信息,来决定X轴方向迭代的起始值。
3. 进入循环,直到当前Span内的Rect迭代结束。
int inside = spannerInner.next(current.left, current.right);
这步每执行一次会更新当前的current.left, current.right的值,如果两个Region在X轴方向上有重叠,就会在Span内部发生Rect的分解,并通过更新current.left, current.right记录下当前所处的新的Rect。根据Region执行的boolean操作的语义,以决定当前所指的Rect是否应该加入到操作后的结果Region中去,即
- if ((op_mask >> inside) & 1) {
- if (current.left < current.right &&
- current.top < current.bottom) {
- rasterizer(current);
- }
- }
下图是两个Region执行合并操作时的过程示意图:
最后结果中,有三个Span,第一个Span包含Rect 1, 第二个Span包含Rect 2,3,4, 第三个Span中包含Rect 5。不过上述也只是中间结果,在执行rasterizer(current);之后,才是最终的结果,所以我们接着看下rasterizer(current)的执行过程。根据C++虚函数的多态性,这个调用实际会执行到Region::rasterizer类的 operator()(const Rect& rect) 方法,来看下它的具体实现过程:
- virtual void operator()(const Rect& rect) {
- //ALOGD(">>> %3d, %3d, %3d, %3d",
- // rect.left, rect.top, rect.right, rect.bottom);
- if (span.size()) {
- if (cur->top != rect.top) {
- flushSpan();
- } else if (cur->right == rect.left) {//two rect connected and will merge into one rect.
- cur->right = rect.right;
- return;
- }
- }
- span.add(rect);
- cur = span.editArray() + (span.size() - 1);
- }
简单描述下上述函数所反映的逻辑:如果传入的Rect对象是当前Span的第一个Rect对象,则直接将其加入到向量span中,对于第二个及之后加入的Rect,则进行这样的判断,如果当前Rect对象的top值不等于当前Span的top值,说明是一个新的Span开始,则首先需要通过fushSpan()将之前Span加入到结果Region中去,可能会涉及到合并的操作,主要是指相邻两个Span之间的合并;如果当前Rect对象还属于同一个Span,则看这个Rect是否可以与相邻的Rect进行合并。
4. 最后一步,执行Region::rasterizer类的析构函数
- ~rasterizer() {
- if (span.size()) {
- flushSpan();
- }
- if (storage.size()) {
- bounds.top = storage.itemAt(0).top;
- bounds.bottom = storage.top().bottom;
- if (storage.size() == 1) {
- storage.clear();
- }
- } else {
- bounds.left = 0;
- bounds.right = 0;
- }
- storage.add(bounds);
- }
首先,执行最后一次flushSpan,确保所有的Span都加入到了结果Region中,当然,也会执行必要的合并。最后,根据Region合法性的要求,将Region的边界作为一个Rect对象加入到结果Region中。所以,最后,我们看到的结果Region是这样的:
三、T-Junction消除
T-Junction问题是图像渲染中的经常碰到的一个问题,特别是3D Graphics Rendering技术中,T-Junction消除是其中的一个研究课题。那什么是T-Junction问题呢?
下面是对T-Junction问题的描述:
“A T-Junction is a spot where two polygons meet along the edge of another polygon”
如:
另一种表述为:
“The location where a vertex of one polygon lies on the edge of another polygon is called a T-Junction”
T-Junction会产生什么后果呢,我们先看下Android代码中的描述:
“avoid T-junctions as they cause artifacts in between the resultant geometry when complex transforms occur.”
我的理解是因为图像渲染过程中会基于顶点进行插值,顶点A处的插值点在图形转换后,并不能保证与顶点A完全重合,所以在生成的图像中T-Junction处产生亮点,与周围像素不协调。下面我们重点看Android源码是怎样进行T-Junction消除的。
在Region类中,专门定义了一个函数:createTJunctionFreeRegion,它对一个含有T-Junction的Region进行修改,使之变成没有T-Juncion的Region。最终结果会出现对一些Span的分解。
根据RegionTest.cpp中的checkVertTJunction函数:
- void checkVertTJunction(const Rect* lhs, const Rect* rhs) {
- EXPECT_FALSE((rhs->right > lhs->left && rhs->right < lhs->right) ||
- (rhs->left > lhs->left && rhs->left < lhs->right));
- }
我们可以看到Android视如下几种情况为T-Juction:
在了解了存在T-Junction的几种存在情况后,我们来看具体是怎样消除T-Junction的:
- Region Region::createTJunctionFreeRegion(const Region& r) {
- if (r.isEmpty()) return r;
- if (r.isRect()) return r;
- Vector<Rect> reversed;
- reverseRectsResolvingJunctions(r.begin(), r.end(), reversed, direction_RTL);
- Region outputRegion;
- reverseRectsResolvingJunctions(reversed.begin(), reversed.end(),
- outputRegion.mStorage, direction_LTR);
- outputRegion.mStorage.add(r.getBounds()); // to make region valid, mStorage must end with bounds
- #if VALIDATE_REGIONS
- validate(outputRegion, "T-Junction free region");
- #endif
- return outputRegion;
- }
可以看到,具体执行T-Junction消除的函数是reverseRectsResolvingJunctions,而且被调用了两次,这其实也反映了消除T-Junction过程中的步骤,在这个过程中,需要对Region按以Span为单位进行两次扫描,第一次从Y轴减小的方向扫描,第二次,从Y轴增长的方向扫描。每次扫描,都会将T-Junction点消除,进行两次扫描的原因是因为每次扫描只能消除上述的5种情况。下图是T-Junction点消除后的情况:
红色虚线是分解边。可以看到,这个过程会产生许多新的Rect。
四、测试与验证
前面三部分是理论部分,主要是通过阅读源码得到的一些步骤和过程,下面将通过测试程序来验证我们的理论,看我们的理解是否正正确:
1. 验证Region的boolean操作。
- void test2()
- {
- Region r;
- r.clear();
- r.orSelf(Rect(0, 0, 2, 2));
- r.orSelf(Rect(1, 1, 3, 3));
- dump(r, "A|B");
- echo("--------------");
- r.clear();
- r.orSelf(Rect(0, 0, 2, 2));
- r.xorSelf(Rect(1, 1, 3, 3));
- dump(r, "A xor B");
- echo("----------------------------");
- r.clear();
- r.orSelf(Rect(0, 0, 2, 2));
- r.subtractSelf(Rect(1, 1, 3, 3));
- dump(r, "A-B");
- echo("---------------------");
- }
输出结果:
- Region: A|B, count = 3
- [ 0, 0, 2, 1]
- [ 0, 1, 3, 2]
- [ 1, 2, 3, 3]
- ----------------------
- Region: A xor B, count = 4
- [ 0, 0, 2, 1]
- [ 0, 1, 1, 2]
- [ 2, 1, 3, 2]
- [ 1, 2, 3, 3]
- ----------------------
- Region: A-B, count = 2
- [ 0, 0, 2, 1]
- [ 0, 1, 1, 2]
- ----------------------
结果完全符合预期。
2. 验证T-Junction的消除结果是否与我们的预期一致。
- void test1()
- {
- Region r;
- r.clear();
- r.orSelf(Rect(1, 0, 2, 1));
- r.orSelf(Rect(0, 1, 3, 2));
- dump(r, "1");
- echo("----------------------------");
- Region modified = Region::createTJunctionFreeRegion(r);
- dump(modified, "1'");
- echo("------------------------");
- r.clear();
- r.orSelf(Rect(0, 0, 1, 1));
- r.orSelf(Rect(0, 1, 2, 2));
- dump(r, "2");
- echo("-------------------------");
- modified = Region::createTJunctionFreeRegion(r);
- dump(modified, "2'");
- echo("-----------------------------");
- r.clear();
- r.orSelf(Rect(0, 0, 2, 1));
- r.orSelf(Rect(1, 1, 3, 2));
- dump(r, "3");
- echo("-------------------");
- modified = Region::createTJunctionFreeRegion(r);
- dump(modified, "3'");
- echo("--------------------------");
- r.clear();
- r.orSelf(Rect(1, 0, 2, 1);
- r.orSelf(Rect(0, 1, 2, 2));
- dump(r, "4");
- echo("------------------------");
- modified = Region::createTJunctionFreeRegion(r);
- dump(modified, "4'");
- echo("------------------------");
- r.clear();
- r.orSelf(Rect(1, 0, 3, 1));
- r.orSelf(Rect(0, 1, 2, 2));
- dump(r, "5");
- modified = Region::createTJunctionFreeRegion(r);
- dump(modified, "5'");
- echo("--------------------------");
- }
输出结果:
- Region: 1, count = 2
- [ 1, 0, 2, 1]
- [ 0, 1, 3, 2]
- ----------------------
- Region: 1', count = 4
- [ 1, 0, 2, 1]
- [ 0, 1, 1, 2]
- [ 1, 1, 2, 2]
- [ 2, 1, 3, 2]
- ----------------------
- Region: 2, count = 2
- [ 0, 0, 1, 1]
- [ 0, 1, 2, 2]
- ----------------------
- Region: 2', count = 3
- [ 0, 0, 1, 1]
- [ 0, 1, 1, 2]
- [ 1, 1, 2, 2]
- ----------------------
- Region: 3, count = 2
- [ 0, 0, 2, 1]
- [ 1, 1, 3, 2]
- ----------------------
- Region: 3', count = 4
- [ 0, 0, 1, 1]
- [ 1, 0, 2, 1]
- [ 1, 1, 2, 2]
- [ 2, 1, 3, 2]
- ----------------------
- Region: 4, count = 2
- [ 1, 0, 2, 1]
- [ 0, 1, 2, 2]
- ----------------------
- Region: 4', count = 3
- [ 1, 0, 2, 1]
- [ 0, 1, 1, 2]
- [ 1, 1, 2, 2]
- ----------------------
- Region: 5, count = 2
- [ 1, 0, 3, 1]
- [ 0, 1, 2, 2]
- ----------------------
- Region: 5', count = 4
- [ 1, 0, 2, 1]
- [ 2, 0, 3, 1]
- [ 0, 1, 1, 2]
- [ 1, 1, 2, 2]
- ----------------------
这个结果也符合预期。
3. 练习题
构造如下Region:
- Region r;
- // |xxxx |
- // | xxxx |
- // | xxxx |
- // | xxxx|
- for (int i = 0; i < 4; i++) {
- r.orSelf(Rect(i,i,i+4,i+1));
- }
消除T-Junction前有4个Rect, 消除T-Junction后有16个Rect。
后记:
1. 获知Region当前Rect的数量以及存放Rect的数组:
- SharedBuffer const* Region::getSharedBuffer(size_t* count) const {
- // We can get to the SharedBuffer of a Vector<Rect> because Rect has
- // a trivial destructor.
- SharedBuffer const* sb = SharedBuffer::bufferFromData(mStorage.array());
- if (count) {
- size_t numRects = isRect() ? 1 : mStorage.size() - 1;
- count[0] = numRects;
- }
- sb->acquire();
- return sb;
- }
其中,通过SharedBuffer::bufferFromData获取Region实际存取Rect的Buffer,记录下此ShareBuffer,
sb->data() == mStorage.array()
一般需要记录下sb->data()返回的地址,以便通过它能获取对应的ShareBuffer对象,最后调用它的release方法释放Buffer。