游戏的AOI算法




游戏的AOI算法应该算作游戏的基础核心了,许多逻辑都是因为AOI进出事件驱动的,许多网络同步数据也是因为AOI进出事件产生的。因此,良好的AOI算法和基于AOI算法的优化,是提高游戏性能的关键。


我在实践中所熟知的游戏AOI算法大致有两种,在此做一些总结,顺便梳理一下,打算设计出一套统一的接口封装不同的算法实现(网络上还有些其他算法,因为不熟悉不作记录了)。我所记录的这两种算法也算经典了,一个叫做网格法,一个叫做双链表法。


统一接口设计:

AOI需求大概是这样:
1.游戏地图上有一些npc和玩家在移动,每一个这样移动的对象我们叫做AOIEntity,每一个AOIEntity可以挂多个不同半径的AOI,每一个这种半径的AOI单元我们叫做AOINode,如此,AOIEntity拥有多个AOINode,然后每一个场景管理者AOIManager管理着多个这样的AOIEntity对象。
2.AOI进出事件由三种行为产生:进入场景,离开场景,在场景移动,因为这是AOIEntity相互之间的作用,故因放在AOIManager中统一管理,接口类似这样:
void AOIManager:Enter(AOIEntity *entity, cosnt Point& target_pos);
void AOIManager:Move(AOIEntity *entity, cosnt Point& target_pos);
void AOIManager:Leave(AOIEntity *entity);
3.添加一个AOINode的接口,主要参数是Id(用于标识这个AOI),半径,进出事件的callback函数:
void AOIEntity:AddNode(int aoi_id, float radius, AOICB enter_cb, AOICB leave_cb);
4.获取周围对象和观察者玩家对象集合的接口,这个可以在更上层,通过在响应进出事件的enter_cb, leave_cb中维护这样的集合。


网格算法:

既是把整个场景用网格划分成一个一个小区域(划分粒度可调整),每一个区域是当前场景该区域内的AOIEntity集合,当有一个AOIEntity移动时,根据对象移动之前坐标和目的地坐标,算出移动前所在网格SrcGrid和目的地网格DstGrid,根据一个可调的偏移参数,算出受这次移动影响的各个网格所在的一个网格区域(通常是一个包含这些网格的一个大网格),遍历每一个这样的网格里的每一个AOIEntity,与这个移动AOIEntity互相作比较,主要是比较这些事情:
1.是不是对方曾经在我的一个AOINode的半径内,移动后就不在了,是则产生离开回调;
2.是不是对方曾经不在我的一个AOINode的半径内,移动后就出现了,是则产生进入回调;
注意虽然移动是一个AOIEntity在移动,但是这种比较却要是互相的。
上面说的是网格算法的最简单实现了,当然实践上有许多地方可以优化和调整,包括使用更高效的数据结构,不细说。




双链表算法:

* 此算法名字是自己取的,因为算法基本上就是围绕两个双向链表在转--代表X轴的链表(叫做LinkListX)和代表Y轴的链表(叫做LinkLIstY)。对于每一个AOI单元,以AOIEntity的坐标位置为中心,可以构造出一个AOI矩形(以四元组[xleft,xright,ytop,ybottom]表示)。LinkListX链接的是所有这样的AOI矩形的xleft,xright,LinkListY链接的是所有这样的AOI矩形的ytop,ybottom,并且两者都是按照坐标值从小到大的顺序链接起来的。这样每一个AOI单元都在LinkListX,LinkListY上产生了总共4个节点,特殊的对于每一个可见的AOIEntity,以他们的坐标(XCenter,YCenter)在LinkListX,LinkListY上又产生了总共2个节点。现在当AOIEntity在场景中移动时,他所包含的在LinkList中的节点会相应的更改坐标值,而LinkList为了维护从小到大的顺序,会遍历链表,移动位置,直到重新有序。LinkList在这个过程,会产生AOI事件。
* 具体来说,当AOIEntity要移动到(targetX,targetY), 对应的AOI矩形变成[targetX-R, targetX+R, targetY-R, targetY+R],显然这四个节点值的改变后LinkList不再有序,现在来调整LinkList,可以这样来理解这个过程,对象先在X轴上移动到targetX,对应的是在LinkListX上移动,每次交换两个节点的位置都应该判断:1.两者的拥有者是不是不同的Entity;2.是不是一个是代表Entity的节点,一个是代表AOI矩形边界的节点;3.两者的拥有者整体上能否确实产生AOI进出事件。然后在Y轴上移动到targetY,过程与X轴对称。
* 可以总结一下,LinkList的节点的属性:
struct LinkNode {
byte _type; // 代表类型,主要是区分AOI矩形的边界和Entity本身
AOINode *_owner; // 属于哪个AOI单元,这里把代表Entity本身的节点也当作一个R=0的AOI单元
int _pos_val; // 坐标值,
struct LinkNode *_next, *prev;
}


网格算法原理和实现都简单,每次移动时遍历的受影响的单元是以网格为单位,并不是直接以Entity为单位,会产生许多次无效的遍历,对效率产生多少影响也是依赖网格的划分粒度和场景人数,不过总的来说对于不是海量的对象移动,加上一些上层逻辑相关的优化,一般的MMO已经是够用了。
双链表算法,巧妙的把一个AOI矩形拆成4个不同节点,每次移动遍历的受影响的单元直接是以Entity为单位,省去了许多无效遍历,但是在实现上要较网格算法复杂,另外其性能也是受场景中人数的影响。
<span style="color:#404040;">1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。</span><br /><br /><span style="color:#404040;">2.网上数据结构和算法的课程不少,但存在两个问题:</span><br /><br /><span style="color:#404040;">1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了</span><br /><span style="color:#404040;">2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 </span><br /><span style="color:#404040;">3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 </span><br /><span style="color:#404040;">4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴</span><br /><br /><span style="color:#404040;">3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。</span><br /><br /><span style="color:#404040;">教程内容:</span><br /><span style="color:#404040;">本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。</span><br /><br /><span style="color:#404040;">学习目标:</span><br /><span style="color:#404040;">通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。</span>
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页