PANDAS idioms-根据多个条件选择

import functools

import pandas as pd
import numpy as np

df = pd.read_excel("examples.xls")
# review what learned yesterday
df["level"] = np.where(df.年级 <= 2013, "old", "new")
df.to_excel("example_new.xls")

# spliting
# select the index satisfy some condition
df_new = df.loc[df.年级 > 2013]

# Building Criteria
# 选择满足多个条件的行, 这其实也是昨天的内容
df_new = df[(df.年级 == 2013) & (df.是否在职生 == 0)]
# 根据条件修改某列
df.loc[(df.年级 == 2013) | (df.学习形式代码 == 1), "注册状态"] = 1
# 根据条件增加某列
df["满足条件"] = np.where((df.年级 == 2013) | (df.学习形式代码 == 1), "是", "否")


# 根据条件进行排序
df2 = pd.DataFrame({'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]})
df2_sort = df2.loc[(df2.AAA-5.5).abs().argsort()]
df2_sort2 = df2.loc[(df2.AAA-5.5).argsort()]
a = df2.AAA  # 这得到的是一个Series
print(df2_sort2)

# 多个条件选择
Crit1 = df2.AAA <= 5.5
Crit2 = df2.BBB == 10
Crit3 = df2.CCC > -40.0
CritList = [Crit1, Crit2, Crit3]
AllCrit = functools.reduce(lambda x, y: x & y, CritList)   # reduce: x&y&z
print(df2.loc[AllCrit])


今天的很多知识都是昨天提到过的,仅增加两个知识点:
1. 根据某一列排序更快的写法: df.loc[df.AAA.argsort()]  #事实上这就是用argsort()函数先生成一个index的array
2. 根据多个条件筛选,更快的写法:
df.loc[functools.reduce(lambda x, y: x & y, CritList)] 
# lambda x, y: x & y是一个整体,作为一个function
# CritList作为sequence
# 对于reduce的解释:For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5)

代码在https://github.com/zhangjipinggom/pandas_learning

 


其他记录:
(1)通过循环的方式添加某一列

def filter(df, target1, category_name1, target2,  category_name2, xls_name):
    fangxiangma = []
    for course0 in df.业务课二代码.values:
        if course0 in target1:
            fangxiangma.append(category_name1)
        elif course0 in target2:
            fangxiangma.append(category_name2)
        else:
            fangxiangma.append(0)
    df["方向码"] = fangxiangma
    df.to_excel("added"+xls_name)

(2)在组内排序
比如在同一个"方向码"内按照"总成绩"排序

df.sort_values(['方向码','总成绩'], ascending = [True,False], inplace=True)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值