深度学习应用
文章平均质量分 79
O天涯海阁O
主要从事图像分析算法设计、深度学习
展开
-
Image Super-Resolution Using Deep Convolutional Networks
Image Super-Resolution Using Deep Convolutional Networkscode: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html本文使用一个三层的卷积网络来实现图像超分辨率,得到很好的效果。1 I NTRODUCTION 单帧图像的超分辨率,即由一幅低分辨率图像重建出一幅高分辨率图像。在计算机视觉中这是一个原创 2016-12-23 16:53:22 · 6661 阅读 · 0 评论 -
快速去阴影--Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network
Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network https://arxiv.org/abs/1709.09283本文主要解决快速去阴影问题,这里使用的策略是 SVM+CNNA. Computing Shadow Prior 首先使用 mean shift 算法对输入图像进原创 2017-09-30 08:56:09 · 1822 阅读 · 1 评论 -
视频插帧--Video Frame Interpolation via Adaptive Convolution
Video Frame Interpolation via Adaptive Convolution CVPR2017 http://web.cecs.pdx.edu/~fliu/project/adaconv/本文使用CNN网络完成 frame interpolation,这里我们将像素插值问题看作对相邻两帧中相应图像块的卷积,通过一个全卷积CNN网络来估计 spatially-adapti原创 2017-10-09 14:04:33 · 14400 阅读 · 0 评论 -
视频插值--Video Frame Interpolation via Adaptive Separable Convolution
Video Frame Interpolation via Adaptive Separable Convolution ICCV2017 https://github.com/sniklaus/pytorch-sepconv本文将视频插帧看作一个局部分离卷积,对输入帧使用一组 1D 核。 这么做可以极大的减少参数量,加快速度。 formulates frame interpolation原创 2017-10-09 14:59:06 · 7235 阅读 · 0 评论 -
深度去雨--Deep Joint Rain Detection and Removal from a Single Image
CVPR 2017 https://arxiv.org/abs/1609.07769?context=cs 代码和模型会公布的。首先通过下图感性认识一下图像中去雨是怎么回事 针对去雨问题已经提出了各种算法,当前算法主要存在的问题如下: 1)因为雨水和背景纹理的内在重叠性,当前大部分算法会平滑没有雨区域的纹理细节。 2)雨水在图像中引起的变化是复杂的,但是当前对雨水常用的模型没有很好的覆盖真原创 2017-03-21 15:51:47 · 11501 阅读 · 7 评论 -
CNN数玉米穗--TasselNet: Counting maize tassels in the wild via local counts regression network
TasselNet: Counting maize tassels in the wild via local counts regression network https://link.springer.com/article/10.1186/s13007-017-0224-0本文使用CNN网络来数玉米穗,类似于人群密度估计的思路。利用图像估计玉米穗的密度,难度还是比较大的 这里的思路首先局原创 2017-11-02 14:10:15 · 1509 阅读 · 1 评论 -
海康威视的工业相机的使用经历
单位(和海康是属于一个集团的)某一部门 选择用 NVIDIA® JETSON™ TX2 + 海康威视工业相机 的组合来完成 某检测识别任务,在相机选型前用邮件咨询 海康威视工业相机对 TX2 是否支持,得到海康相关人员的肯定答复。 于是采购了海康威视的工业相机回来。 厂家将 相机的 相关驱动和SDK相关资料发过来。 在开发过程中遇到以下问题: 1) 在基于x86-64 的 Ubunt...原创 2018-05-03 10:22:13 · 38109 阅读 · 21 评论 -
Nvidia TX2 安装中文输入法
https://blog.csdn.net/jiangchao3392/article/details/73650710硬件平台: NVIDIA Jetson TX2系统平台: Ubuntu16.04 LTS搜狗输入法:1,搜狗官网下载搜狗输入法http://pinyin.sogou.com/linux/2,安装,鼠标右键安装。3,重启,就行了 (这里应该需要做些设置...转载 2018-05-18 14:43:15 · 9606 阅读 · 2 评论 -
图像去噪--Noise2Noise: Learning Image Restoration without Clean Data
Noise2Noise: Learning Image Restoration without Clean Data ICML 20181 Introduction 基于 corrupted or incomplete measurements 进行信号重构是一个很重要的课题。今年随着深度学习快速发展,自然也将CNN网络引入来解决图像去噪问题。 training a regression ...原创 2018-08-28 16:39:01 · 5122 阅读 · 4 评论 -
ubuntu 14.04 16.04 18.04使用阿里源
https://blog.csdn.net/bin_zhang1/article/details/81008645首先备份一下原来的sources.listcp /etc/apt/sources.list /etc/apt/sources.list.bak然后修改sources.listsudo vi /etc/apt/sources.list然后根据你的版本将sources.lis...转载 2018-11-16 09:21:46 · 604 阅读 · 0 评论 -
深度抠图--Deep Image Matting
CVPR2017 https://arxiv.org/abs/1703.03872抠图问题还是比较难的,简单的用一个公式表达如下: 左边是图像位置 i 的 RGB 值,右边是 前景和背景的线性组合。 matte estimation alpha 是未知的。对于每个像素,有3个已知量,7个未知量,所以这个一个 underconstrained 问题,即变量个数大于方程个数。当前针对抠图问题的原创 2017-03-20 14:25:14 · 22198 阅读 · 21 评论 -
视频中的运动特征--Learning Motion Patterns in Videos
Learning Motion Patterns in Videos CVPR2017 Torch code: http://thoth.inrialpes.fr/research/mpnet 本文要解决的问题是 determining whether an object is in motion, irrespective of camera motion, 注意这里的相机是可以运动原创 2017-09-11 15:36:10 · 2942 阅读 · 0 评论 -
CNN阴影去除--DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal
DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal CVPR2017本文使用深度学习CNN网络来进行阴影去除,最大的特色就是全自动的端对端的实现阴影去除。 automatic and end-to-end deep neural network (DeshadowNet)阴影去除也算是一个老大难问题了,目前存原创 2017-08-29 13:49:15 · 8489 阅读 · 11 评论 -
CNN网络泛化能力--Why Deep Nets Generalize?
http://www.inference.vc/everything-that-works-works-because-its-bayesian-2/Why do Deep Nets Generalise? HINT: because they are really just an approximation to Bayesian machine learning.深度网络的泛化能力是怎么来的?原创 2017-05-26 16:46:04 · 3936 阅读 · 0 评论 -
深度摄影风格转换--Deep Photo Style Transfer
Deep Photo Style Transfer https://arxiv.org/abs/1703.07511Code: https://github.com/luanfujun/deep-photo-styletransfer本文使用深度卷积网络来进行 摄影风格转换,在 Neural Style algorithm [5] 的基础上进行改进的,主要是在目标函数进行了修改,加了一项 Pho原创 2017-04-27 11:02:12 · 8844 阅读 · 2 评论 -
多标签图像分类--HCP: A Flexible CNN Framework for Multi-Label Image Classification
HCP: A Flexible CNN Framework for Multi-Label Image ClassificationPAMI 2016 本文提出了一个 CNN 网络 HCP 不需要真值训练数据的情况下可以完成对多标签图像分类问题。单标签和多标签图像 HCP 是怎么处理一幅图像的了? 首先提取图像中的候选区域,然后对每个候选区域进行分类,最后使用 cross-hypothe原创 2017-05-31 11:01:46 · 11054 阅读 · 4 评论 -
有意思的文献
基于百万图片的全球服饰时尚纵览 StreetStyle: Exploring world-wide clothing styles from millions of photos https://arxiv.org/abs/1706.01869 Project: http://streetstyle.cs.cornell.edu/ Demo: http://streetstyle.cs.co原创 2017-06-08 14:06:27 · 1280 阅读 · 0 评论 -
Layer Normalization
code : https://github.com/ryankiros/layer-norm本文主要是针对 batch normalization 存在的问题 提出了 Layer Normalization 进行改进的。这里首先来回顾一下 batch normalization : 对于前馈神经网络第 l 隐层,神经元的输入为 a, 激活函数为 f, 激活函数输出为 h。权值 w 通过 S原创 2016-11-15 11:08:18 · 36119 阅读 · 2 评论 -
Dynamic Network Surgery for Efficient DNNs
NIPS 2016 http://arxiv.org/abs/1608.04493code: https://github.com/yiwenguo/Dynamic-Network-Surgery本文提出一种动态压缩CNN网络模型算法。针对 LeNet-5 和 AlexNet 可以分别减少 108倍和 17.7倍的参数,而且不损失精度。本文主要参考了文献【9】,文献【9】通过删除一些不重要的参数原创 2016-11-18 16:17:51 · 4596 阅读 · 6 评论 -
CNN光流计算2--FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks CVPR2017 Code: https://github.com/lmb-freiburg/flownet2本文是对 FlowNet 的改进,改进主要有三点: 1) 在训练层面,数据库的训练的顺序很重要 the schedule of presentin原创 2017-07-29 11:26:10 · 3160 阅读 · 0 评论 -
CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks ICCV2015 Code: https://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15/本文使用CNN网络来计算光流,实现端对端训练,自己制作了个训练数据库 Flying Chairs Network Arch原创 2017-07-28 15:43:54 · 7243 阅读 · 1 评论 -
CNN边缘检测--Richer Convolutional Features for Edge Detection
Richer Convolutional Features for Edge Detection CVPR2017 Caffe:https://github.com/yun-liu/rcf本文针对边缘检测问题,基于 VGG16 网络设计了一个 richer convolutional features (RCF) 用于边缘检测,效果目前是很好的。首先来看看 VGG16不同卷积层的特征输出 3原创 2017-08-28 16:54:39 · 13665 阅读 · 1 评论