机器学习
文章平均质量分 89
O天涯海阁O
主要从事图像分析算法设计、深度学习
展开
-
一致性直线提取--Coherent Line Drawing
Coherent Line DrawingProc. NPAR 2007https://github.com/uva-graphics/coherent_line_drawinghttps://github.com/SSARCandy/Coherent-Line-Drawinghttps://ssarcandy.tw/2017/06/26/Coherent-Line-Drawing/所谓的 Line drawing 就是直线素描,在这里的意境就是:输入一幅图像,输出一副直线艺术风格画本文主要是原创 2021-03-15 14:44:07 · 1576 阅读 · 0 评论 -
Kullback-Leibler Divergence
http://alpopkes.com/files/kl_divergence.pdfKullback-Leibler 散度定义: Kullback-Leibler 散度用于度量两个分布的相似性(或差异)。对于两个离散概率分布 P 和 Q ,在一个点集合 X 上 Kullback-Leibler 散度定义如下:DKL(P∣∣Q)=∑x∈XP(x)log(P(x)Q(x)) D_{KL}(P||Q)=\sum_{x\in X}^{}P(x)log(\frac{P(x)}{Q(x)} ) DKL(原创 2021-01-08 15:01:53 · 642 阅读 · 0 评论 -
Bias Variance Tradeoff – Clearly Explained
Bias Variance Tradeoff is a design consideration when training the machine learning model. Certain algorithms inherently have a high bias and low variance and vice-versa. In this one, the concept of bias-variance tradeoff is clearly explained so you make a转载 2021-01-08 11:10:30 · 349 阅读 · 0 评论 -
What is Mahalanobis distance? 马氏距离
https://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.htmlhttps://blogs.sas.com/content/iml/2012/02/08/.htmlA variance-covariance matrix expresses linear relationships between variables. Given the covariances between variables, did yo转载 2021-01-08 10:39:53 · 375 阅读 · 0 评论 -
图像 主轴 相关知识
二值图像中物体几何主轴的提取方法https://www.docin.com/p-764752910.html主轴的定义:1)从投影的角度来说,沿着主轴方向做投影,物体所得到的宽度最小;2)从统计学的角度来说,主轴的方向就是该物体的主分量的方向,以该主分量为基础做线性变换可以去掉随机向量中各元素间的相关性;3)从纹理分析和频谱分析的角度来说,对规则的狭长型物体,主轴方向就是垂直于频谱图上能...原创 2019-10-29 15:19:50 · 1706 阅读 · 0 评论 -
一文弄懂神经网络中的反向传播法——BackPropagation
https://www.cnblogs.com/charlotte77/p/5629865.html 最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的...转载 2019-06-12 11:43:14 · 1479 阅读 · 0 评论 -
机器学习--多标签softmax + cross-entropy交叉熵损失函数详解及反向传播中的梯度求导
https://blog.csdn.net/oBrightLamp/article/details/84069835正文在大多数教程中, softmax 和 cross-entropy 总是一起出现, 求梯度的时候也是一起考虑.softmax 和 cross-entropy 的梯度, 已经在上面的两篇文章中分别给出.1 题目考虑一个输入向量 x, 经 softmax 函数归一化处理后...转载 2019-06-03 16:48:10 · 2576 阅读 · 0 评论 -
Linux下批量重命名文件名为数字索引编号(0~N.xxx)的方法
转载自: https://blog.csdn.net/hubai789/article/details/49926019在处理一些数据集的时候,我们经常会碰到数据集的文件名是按时间戳(time stamp),或者其他方式命名的文件,而我们在编写程序时,往往希望读入的这些数据集的文件名是一种更简洁的形式,比如按照索引(index)方式:1.png,2.png,3.png…,那么如何批量重命...转载 2018-06-04 16:27:25 · 13851 阅读 · 2 评论 -
海康威视的工业相机的使用经历
单位(和海康是属于一个集团的)某一部门 选择用 NVIDIA® JETSON™ TX2 + 海康威视工业相机 的组合来完成 某检测识别任务,在相机选型前用邮件咨询 海康威视工业相机对 TX2 是否支持,得到海康相关人员的肯定答复。 于是采购了海康威视的工业相机回来。 厂家将 相机的 相关驱动和SDK相关资料发过来。 在开发过程中遇到以下问题: 1) 在基于x86-64 的 Ubunt...原创 2018-05-03 10:22:13 · 38109 阅读 · 21 评论 -
Boosting 简介--A (small) introduction to Boosting
A (small) introduction to Boosting https://codesachin.wordpress.com/tag/adaboost/这里翻译了一下这篇博客,对 boosting 介绍的很好What is Boosting? 什么是 Boosting Boosting is a machine learning meta-algorithm that aims to原创 2017-12-12 16:54:56 · 855 阅读 · 0 评论 -
Decision stump、Bootstraping、bagging、boosting、Random Forest、Gradient Boosting
1)首先来看看 Decision stump https://en.wikipedia.org/wiki/Decision_stump A decision stump is a machine learning model consisting of a one-level decision tree.[1] That is, it is a decision tree with one in原创 2017-12-11 16:37:46 · 767 阅读 · 0 评论