人
O天涯海阁O
主要从事图像分析算法设计、深度学习
展开
-
行人姿态估计--Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields CVPR 2017 Code: https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation 效果演示视频: https://youtu.be/pW6nZXeWlGM 如果可以看youtu 的话多原创 2017-04-21 10:03:08 · 19345 阅读 · 0 评论 -
人体姿态估计--Learning Feature Pyramids for Human Pose Estimation
Learning Feature Pyramids for Human Pose Estimation ICCV2017 Torch: https://github.com/bearpaw/PyraNet本文主要关注人体部件中的尺度问题, scale variations of human body parts, 这种尺度变化主要发生在 camera view changes or s...原创 2018-03-12 16:01:24 · 3332 阅读 · 1 评论 -
人体姿态跟踪--Pose Flow: Efficient Online Pose Tracking
Pose Flow: Efficient Online Pose Tracking https://github.com/MVIG-SJTU/AlphaPose本文主要是关于人体姿态跟踪方面的内容。在对视频每一帧人体姿态估计完成之后,通过分析前后若干帧之间的人体姿态关系来完成人体姿态跟踪问题。主要通过两个步骤来实现的:1) pose flow 姿态流的生成,2)姿态流中进行了非极大值抑制...原创 2018-03-12 11:37:27 · 12319 阅读 · 0 评论 -
人体姿态估计--RMPE: Regional Multi-Person Pose Estimation
RMPE: Regional Multi-Person Pose Estimation ICCV2017 Code is based Caffe and Torch! https://github.com/MVIG-SJTU/RMPE https://github.com/MVIG-SJTU/AlphaPose多人人体姿态估计本文解决思路: 多人检测+单人人体姿态估计 Faster-R...原创 2018-03-08 14:37:00 · 3915 阅读 · 0 评论 -
人体姿态估计--Stacked Hourglass Networks for Human Pose Estimation
Stacked Hourglass Networks for Human Pose Estimation ECCV2016 http://www-personal.umich.edu/~alnewell/pose/ Torch code is available本文使用CNN网络来进行人体姿态估计,使用 Stacked Hourglass Networks,这里的 Hourglass ...原创 2018-03-07 11:20:21 · 7396 阅读 · 0 评论 -
行人属性--HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis
HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis ICCV2017 https://github.com/xh-liu/HydraPlus-Net本文首次将 attention idea 应用到 行人属性分析上来。行人分析的难度还是比较大,因为不同场合分析的侧重点有所不同,有时需要侧重局部信息,有时需要侧重全局信息。Se原创 2017-10-13 14:19:35 · 2781 阅读 · 4 评论 -
行人检测--What Can Help Pedestrian Detection?
What Can Help Pedestrian Detection? CVPR2017本文主要分析 extra features 对于 基于CNN 的行人检测有什么帮助,设计了一个行人检测网络 HyperLearner 可以有效利用这些 extra features这里的 extra features 主要指 various channel features 行人检测中存在什么问题了?原创 2017-08-24 10:02:10 · 3985 阅读 · 3 评论 -
行人检索--Beyond triplet loss: a deep quadruplet network for person re-identification
Beyond triplet loss: a deep quadruplet network for person re-identification CVPR2017 https://arxiv.org/abs/1704.01719本文使用深度学习进行行人检索,侧重点主要在损失函数的改进,提出了 quadruplet loss 用于减小类内方差 和 增加类间方差上图显示,在我们新的 quadr原创 2017-04-19 14:27:11 · 4996 阅读 · 2 评论 -
人体解析--Look into Person: Self-supervised Structure-sensitive Learning
Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing CVPR2017https://arxiv.org/abs/1703.05446 LIP benchmark:http://hcp.sysu.edu.cn/lip/index.php针对 Huma原创 2017-06-06 09:33:29 · 5451 阅读 · 0 评论 -
多人部件解析--Towards Real World Human Parsing: Multiple-Human Parsing in the Wild
Towards Real World Human Parsing: Multiple-Human Parsing in the Wild https://arxiv.org/abs/1705.07206数据库没给出来啊!本文针对当前 human parsing 数据库基本都是单人标记,而图像实际情况经常含有多人,这里我们提出了一个 Multiple-Human Parsing (MHP) 数据库,原创 2017-06-06 14:25:22 · 3424 阅读 · 0 评论 -
3D人体姿态估计--Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose
Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human PoseProject and Code: https://www.seas.upenn.edu/~pavlakos/projects/volumetric/输入一张彩色图像,输出人体 3D姿态信息,采用 CNN网络端对端训练,技术创新点:1)对三维空间进行网格划分,2)C原创 2017-07-19 10:08:06 · 10014 阅读 · 5 评论 -
快速人体姿态估计--Pose Proposal Networks
Pose Proposal Networks ECCV2018本文使用 YOLO + bottom-up greedy parsing 进行人体姿态估计its total runtime using a GeForce GTX1080Ti card reaches up to 5.6 ms (180 FPS)人体姿态估计总的来说有两大类方法: top-down and bott...原创 2018-09-11 11:00:13 · 5355 阅读 · 3 评论