【学习总结】【超图理论】第三章 超图着色

【学习总结】
参考文献:
Bretto A. Hypergraph theory[J]. An introduction. Mathematical Engineering. Cham: Springer, 2013.

3.1 着色

H = ( V ; E = ( e i ) i ∈ I ) H=(V;E=(e_{i})_{i \in I}) H=(V;E=(ei)iI)是一个超图并且 k ≥ 2 k \ge 2 k2为整数。H的顶点的k-着色(k-coloring)是对顶点的颜色分配,使得:
(i) 一个顶点只有一种颜色。
(ii) 我们使用 k 种颜色为顶点着色。
(iii) 没有基数大于 1 的超边是单色的。

从这个定义很容易看出,任何着色都可以将顶点集划分为k-类:
( C 1 , C 2 , C 3 , . . . , C k ) 使 得 对 于 e ∈ E ( H ) , ∣ e ∣ > 1 那 么 e 不 属 于 C i , ∀ i ∈ { 1 , 2 , 3 , . . . , k } . (C_{1},C_{2}, C_{3},...,C_{k}) 使得对于e \in E(H), |e| >1那么e 不属于C_{i}, \forall i \in \{1,2,3,...,k\}. (C1,C2,C3,...,Ck)使eE(H),e>1eCi,i{1,2,3,...,k}.

H 的色数 χ ( H ) χ(H) χ(H) 是最小的 k,使得 H 具有 k 着色(图 3.1)。

在这里插入图片描述

命题 3.1 对于阶数(|V|节点的数目)等于 n 的任何超图 H = (V; E),我们有 χ ( H ) ⋅ α ( H ) ≥ n χ(H) · α(H) ≥ n χ(H)α(H)n。( α(H)是稳定数)
命题 3.2 如果 H = (V; E) 是阶数为 n 的超图,我们有:
χ ( H ) + α ( H ) ≤ n + 1. χ(H) + α(H) ≤ n + 1. χ(H)+α(H)n+1.

定理 3.1 (BROOKS 1941) 令 Γ = (V ; E) 是一个无环的连通简单图。 如果 Γ 既不是完全图,也不是奇数环,则 χ(Γ ) ≤ Δ(Γ )。
定理 3.2 设 H = (V ; E) 是无环的线性超图。 那么 χ(H) ≤ Δ(H) 除了以下两种情况外:
(i) Δ(H) = 2,H 的连通分量是奇数圈的图。
(ii) Δ(H) > 2 且 H 的连通分量是阶等于 Δ(H) + 1 的完整图。
在这两种情况下,我们有:
χ ( H ) = Δ ( H ) + 1. χ(H) = Δ(H) + 1. χ(H)=Δ(H)+1.
从这个结果我们有:
推论 3.1 如果 H = (V ; E) 是无环的线性超图,则
χ ( H ) ≤ Δ ( H ) + 1.. χ(H) ≤ Δ(H) + 1.. χ(H)Δ(H)+1..

3.2 特殊着色

3.2.1 强着色

设 H = (V ; E) 是一个超图,强 k -着色(strong k-coloring)是 V 的一个分割 ( C 1 , C 2 , . . . , C k ) (C_{1},C_{2},...,C_{k}) (C1C2...Ck),这样相同的颜色不会在同一个超边中出现两次。 换句话说:
∣ e ∩ C i ∣ ≤ 1 |e ∩ C_{i}| ≤ 1 eCi1
对于任何超边和分割的任何元素。
χ ′ ( H ) χ'(H) χ(H) 表示的强色数是最小的 k,使得 H 具有强 k-着色。

引理 3.1 强着色是 H 的着色。此外,我们有
χ ′ ( H ) ≥ χ ( H ) χ'(H) ≥ χ(H) χ(H)χ(H)
χ ′ ( H ) χ'(H) χ(H) 是图 [ H ] 2 [H]_{2} [H]2 的色数。

3.2.2 公平着色

设 H = (V; E) 是一个超图,一个公平k-着色是 V 的 k-分割 ( C 1 , C 2 , . . , C k ) (C_{1}, C_{2}, . . , C_{k}) (C1,C2,..,Ck) 使得在每个超边 e 中,所有颜色 { 1 , 2 , . . . , k } \{1, 2 , . . . , k\} {1,2,...,k} 出现相同的次数,如果 k 不整除 ∣ e i ∣ |e_{i}| ei,则在1内取整。
这是:
对 于 所 有 的 e ∈ E , ⌊ ∣ e ∣ k ⌋ ≤ ∣ e ∩ C i ∣ ≤ ⌈ ∣ e ∣ k ⌉ , i ∈ { 1 , 2 , . . . , k } 对于所有的e \in E, \lfloor \frac{|e|}{k} \rfloor \le |e \cap C_{i}| \le \lceil \frac{|e|}{k} \rceil, i \in \{1,2,...,k\} eE,keeCike,i{1,2,...,k}
很容易看出,强 k-着色是一种公平k-着色。

3.2.3 好着色(Good Coloring)

设 H = (V; E) 是一个超图,好 k-着色是 V 的 k-分割 ( C 1 , C 2 , . . , C k ) (C_{1}, C_{2}, . . , C_{k}) (C1,C2,..,Ck),使得每个超边 e 包含尽可能多的不同颜色,即 对于每个 e ∈ E,e 中的颜色数为 m i n { ∣ e ∣ ; k } min\{|e|; k\} min{e;k}

引理 3.2 令 H = (V; E) 是一个超图(其中m = |E|),而 C = ( C 1 , C 2 , . . , C k ) C=(C_{1}, C_{2}, . . , C_{k}) C=(C1,C2,..,Ck)是 H 的一个好 k-着色,我们有:
(i) 如果 k ≤ c r ( H ) k ≤ cr(H) kcr(H),(cr(H) 是 H 的余秩(co-rank:超边的最小基数)),则 C 是 k 个横向集合中的一个分割;
(ii) 如果 k ≥ r(H) 那么goodcoloring C C C 是强着色。

3.2.4 均匀着色(Uniform Coloring)

设 H = (V; E) 是 |V| 的超图 = n。
均匀 k-着色是 k 分割:
V 的 ( C 1 , C 2 , . . , C k ) V的(C_{1}, C_{2}, . . , C_{k}) V(C1,C2,..,Ck)
使得相同颜色的顶点数始终相同,如果 k 不整除 n,则在1内取整,即
⌊ n k ⌋ ≤ ∣ C i ∣ ≤ ⌈ n k ⌉ , i ∈ { 1 , 2 , . . . , k } . \lfloor \frac{n}{k} \rfloor \le |C_{i}| \le \lceil \frac{n}{k} \rceil, i \in \{1,2,...,k\}. knCikn,i{1,2,...,k}.

3.2.5 超边着色

设 H = (V; E) 是一个超图,H 的超边 k-着色是超边的着色,使得:
(i) 一个超边只有一种颜色。
(ii) 我们使用 k 种颜色为超边着色。
(iii) 两个不同的相交超边接收两种不同的颜色。
最小超边k-着色的大小是 H 的边色数(chromatic index)。我们将其表示为 q(H)。

引理 3.3 设 H 是一个超图。 我们有:
q ( H ) ≥ Δ 0 ( H ) ≥ Δ ( H ) 。 q(H) ≥ Δ_{0}(H) ≥ Δ(H)。 q(H)Δ0(H)Δ(H)
其中 Δ 0 ( H ) Δ_{0}(H) Δ0(H) 是相交族的最大基数,Δ(H) 是星形的最大基数。

引理 3.4 H 的边色数是 L(H) 的色数。 而且
q ( H ) = χ ( [ H ∗ ] 2 ) . q(H) = χ([H^{∗}]2). q(H)=χ([H]2).

3.2.6 双色超图

双色(或 2 色)超图是二部图的推广。 我们提醒读者,一个图是二部图当且仅当它是双色的。 可以在多项式时间内识别图是否为二部图。 双色超图的情况并非如此:众所周知,识别双色超图的问题是NP 完全 的[Lov73, EG96]。 有时,双色超图被称为二分超图。

如果一个回路 ( x 1 , e 1 , x 2 , e 2 , . . , x k , e k , x 1 ) (x_{1}, e_{1}, x_{2}, e_{2}, . . , x_{k}, e_{k}, x_{1}) (x1,e1,x2,e2,..,xk,ek,x1) 的超边数为奇数,则它是奇数。
奇数回路 ( x 1 , e 1 , x 2 , e 2 , . . , x k , e k , x 1 ) (x_{1}, e_{1}, x_{2}, e_{2}, . . , x_{k}, e_{k}, x_{1}) (x1,e1,x2,e2,..,xk,ek,x1)具有不同的顶点并且
x 1 ∈ e 1 ∩ e k x_{1} \in e_{1} \cap e_{k} x1e1ek
是一个Sterboul回路(Sterboul cycle)如果两个不连续的超边不相交并且对于每个
i = 1 , 2 , . . . , k − 1 , ∣ e i ∩ e i + 1 ∣ = 1. i = 1, 2, . . . , k − 1, |e_{i} ∩ e_{i+1}| = 1. i=1,2,...,k1,eiei+1=1.

定理 3.3 如果超图 H 没有 Sterboul 回路,那么它是双色的。

定理 3.4 设 H = (V ; E) 是一个没有孤立顶点的超图。 如果 H 是超边传递的,则存在一个分割 ( V 1 , V 2 , . . . , V k ) (V_{1}, V_{2}, . . . , V_{k}) (V1,V2,...,Vk) 使得:
(i) ∑ t = 1 k r ( H ( V t ) ) = r ( H ) \sum _{t=1}^{k} r(H(V_{t})) = r(H) t=1kr(H(Vt))=r(H),
(ii) H ( V t ) H(V_{t}) H(Vt) 对所有 t 都是可传递的。

推论 3.2 如果 H = (V ; E) 是一个没有孤立顶点的超边传递超图,那么它是双色的。

定理 3.5 设 Γ = (V; A) 是一棵树,H = (V; E) 是与 Γ 关联的子树超图,则 H 是双色的。

定理 3.6 临界(critical 如果超图H=(V;E)不是2-可着色的,但任何适当的子超图都是2-可着色的,则它是临界的。)超图的边数至少与顶点数一样多。

定理 3.7 一个图 Γ = (V; E) 是4-色的当且仅当超图 H(Γ) 是双色的。

3.3 图和超图着色算法

在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值