单相正弦逆变器设计(PR控制)
1. 技术指标
-
额定容量:7.4kVA ;
-
输出电压有效值230V,输出频率50Hz,阻性负载;
-
直流侧电压设定为400V;
-
开关频率设为50kHz。
2. 单相正弦逆变器PWM调制
2.1 所采用PWM调制方法的原理
本设计采用了SPWM正弦脉宽调制的方法,其基本原理为冲量等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其惯性环节的输出基本相同。给定50Hz的正弦调制波和开关频率50kHz的三角载波,载波比为:
N
=
f
c
f
r
=
50
×
1
0
3
50
=
1000
N=\frac{f_c}{f_r}=\frac{50\times 10^3}{50}=1000
N=frfc=5050×103=1000
二者通过比较器后生成一系列占空比按正弦规律变化的脉冲。当调制波大于载波时输出高电平,调制波小于载波时输出低电平,且正弦调制波为最大值时,脉冲的宽度最大;正弦调制波为最小值时,脉冲的宽度最小。此设计中采用了SPWM中的异步调制,即载波频率(开关频率)恒定。
调制波幅值接近最大值时调制结果:
调制波幅值接近最小值时调制结果:
2.2 满载条件下调制度计算
调制度M定义为调制波幅值Vrm与载波幅值Vcm之比,同时输出电压基波幅值受调制度M控制,具体关系为:
V
1
=
M
V
d
c
V_1=MV_{dc}
V1=MVdc
满载时输出电压基波幅值为:
V
1
=
230
×
2
=
325.269
V_1=230\times \sqrt{2}=325.269
V1=230×2=325.269
直流侧电压Vdc设定为400V,由此可计算出调制度为:
M
=
V
1
V
d
c
=
230
×
2
400
=
0.813173
M=\frac{V_1}{V_{dc}}=\frac{230\times \sqrt{2}}{400}=0.813173
M=VdcV1=400230×2=0.813173
3. 单相正弦逆变器设计与仿真
3.1 主电路功率器件选型
开关管选用理想IGBT器件,内阻为0.001Ω,缓冲电阻为100kΩ,负载消耗有功功率设定为7.4kW。
3.2 LC滤波器参数设计
LC滤波器的作用是滤除开关频率次高次谐波,使输出电压、电流波形更加光滑。LC滤波器参数设置的目标是使得截止频率远小于开关频率,同时大于基波频率。本次设计中开关频率为50kHz,基波频率为50Hz。LC滤波器截止频率为计算公式:
w
c
=
1
2
π
L
C
w_c=\frac{1}{2\pi \sqrt{LC}}\\
wc=2πLC1
同时需要满足10×w基波 < wc < w开关/10,因此LC滤波器截止频率应在500Hz~5kHz之间。同时,由于电感值选取过大会导致逆变器体积大幅增加,所以电感值不宜过大。本次设计中选取2mH电感和40uF电容,截止频率为562.7Hz,满足设计要求。
滤波前后输出电压波形变化如下:
滤波前输出电压波形:
仅使用小电感滤波时输出电压波形:
使用LC滤波器滤波后输出电压、电流波形:
3.3 逆变器仿真模型介绍
3.3.1 仿真软件介绍
本设计使用Matlab/Simulink进行仿真,以Simulink中的Simscape库为主,主电路搭建使用Simscape-Specialized Power Systems中的元器件。Simulink是美国Mathworks公司推出的Matlab中的一种可视化仿真工具,Simulink是基于Matlab的框图设计环境,可以用来对各种动态系统进行建模、分析和仿真,它的应用领域十分广泛,任何能用数学模型来描述的系统都可以在Simulink中进行仿真分析。Simscape是Simulink中用于创建和仿真物理系统模型的一个库,Simscape使用基于物理的模型描述语言,能够通过简单的数学表达式来描述物理系统的行为。该库提供了大量预定义的物理模块,如电学、化学、材料、力学、机械等,用户可以直接将这些模块拖拽到Simulink中,通过简单的连接即可构建出复杂的物理系统模型。
3.3.2 仿真环境设置
- 仿真时间:0.1s,5个工频周期
- 仿真步长:5×10-7s,仿真步长设为最大开关周期的1/100
- 求解器:自动选择
3.3.3 仿真模型
仿真模型主要包括三个模块:主电路、信号采集模块、发波模块。其中主电路为单相全桥结构带纯阻性负载,加入LC滤波器滤波;信号采集模块使用Multimeter万用表采集输出电压、电流信号,并送往Scope显示,同时还加入了有效值和THD计算模块,以便直接显示仿真过程中有效值和THD的变化情况;发波模块引入了PR比例谐振控制器,以实现闭环控制。其中给定信号为幅值230V、频率50Hz的正弦波,与输出电压信号比较后输入控制器,由控制器给出控制信号,此控制信号作为调制波,同时给定同开关频率的三角载波,二者经比较器后输出SPWM波,将此作为主电路开关管的控制信号。
单相全桥逆变器主电路:
信号采集模块:
发波模块:
PR比例谐振控制器:
PR比例谐振控制器主要用于电力电子控制中,用来提高环路在特定频率点的增益幅值。其结构由比例环节和谐振环节两部分组成,比例环节与传统PI调节器相似,而谐振环节在谐振频率处的增益为无穷大,在其他频率范围增益较小。这种特性使得比例谐振控制器能够快速有效、无静差地跟踪周期频率信号。PR控制器工程上的传递函数一般如下:
G
P
R
(
s
)
=
K
P
+
2
K
r
w
c
s
s
2
+
2
w
c
s
+
w
0
2
G_{PR}\left( s \right) =K_P+\frac{2K_rw_cs}{s^2+2w_cs+w_0^2}
GPR(s)=KP+s2+2wcs+w022Krwcs
其中Kp为控制比例增益,w0为谐振频率,wc为谐振频宽,Kr为谐振增益。对比各个参数对传递函数的影响:

不同参数下PR控制器Bode图:
从Bode图可以看出,Kp可以调节PR控制器的整体增益,Kr可以调节谐振峰增益和谐振频段宽度,wc可以调节谐振频段宽度和谐振峰值,w0为谐振频率点。
在本设计中,经过多次调参及优化,最终确定各参数的值为:Kp = 1,Kr = 500,wc = 2π×5Hz,w0= 2π×50Hz。此时,PR谐振控制器的Bode如下:
3.4 仿真结果分析及电压THD验证
3.4.1 恒定负载运行
恒定负载运行时输出电压、电流波形:
由上图波形可以看出,输出电压、电流波形平滑,滤波效果明显。但由于电感的作用,使得输出电流存在一定纹波。
恒定负载运行时输出电压有效值的变化:
从输出电压有效值的变化可以看出,由于第一个周期有效值计算暂未完成,为事先设定的初始值230V。后续输出电压有效值可以基本稳定在222.9V,达到技术指标。
恒定负载运行时输出电压各次谐波:
对输出电压进行傅里叶分析,得到其各次谐波的值如上图。从图中可以看出,除基波外,其他次谐波被明显滤除。计算出输出电压总谐波畸变率为THD=0.04%,符合设计指标。
3.4.2 动态投切负载,验证闭环调节效果
动态投切负载时主电路:
在原电路中加入两条并联负载支路Load1和Load2,Load1和Load2都消耗有功7.4kW。使用开关Breaker控制二者投入和切除的时间,Load1在0.04s时投入,不切除;Load2在0.06s时投入,0.08s时切除。观察输出电压、电流波形及输出电压有效值的变化,从而验证闭环控制的效果。
动态投切负载时输出电压、电流波形:
从输出电流波形可以看出,负载的投切会引起输出电流的变化。0.04s时投入Load1,输出电流变为原来的2倍;0.06s时投入Load2,输出电流变为原来3倍;0.08s时切除Load2,输出电流保持为初始电流的2倍。
动态投切负载时输出电压有效值的变化:
输出电压有效值的变化情况如上图,可以看出,负载的投切并未引起输出电压有效值的波动,输出电压有效值最终稳定在222.9V附近。
动态投切负载时控制环节误差:
比较点误差如上图,可以看出,系统的误差最终稳定在正负1V以内,PR控制器达到了期望控制要求。
对比使用PR谐振控制器的闭环系统和给定PWM信号的开环系统输出电压、电流波形及输出电压有效值的变化情况:
闭环系统与开环系统动态投切负载时输出电压、电流波形比较:
闭环系统与开环系统动态投切负载时输出电压有效值变化情况比较:
由此可知,闭环系统相较于开环系统而言,其输出电压、电流波形虽基本相同,但可以明显改善输出电压有效值在初始时刻和投切负载过程中出现的波动。