yolov8 瑞芯微 RKNN 的 C++部署

   上一篇博客 yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署 写了在rknn模型的转换与PC端仿真测试,有网友希望写一篇在板子上部署的博文和开源提供C++代码。这一篇基于rknn板子进行C++部署,并开源提供完整的源代码和模型,供网友自行进行测试验证。

特别说明:如有侵权告知删除,谢谢。

【完整代码】代码和模型

1、rknn模型准备

   onnx转rknn模型这一步就不再赘述,请参考上一篇 ”yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署“ 。上一篇提供了完整的模型和代码,如果仅仅是想验证模型,可以直接拿提供的rknn模型进行后续的步骤,本篇也是基于上一篇转好的rknn模型进行的,在rk3588芯片部署测试。

2、C++代码准备

   本篇中的 C++ 代码基于瑞芯微官方提供的 rknpu2_1.3.0 进行的。官方提供的开源示例参考 ,提取码:rknn .

3、C++ 代码说明

   模型和图片读取部分参考官方提供的示例,主要说明后处理部分。定义了一个yolov8后处理类,将模型输出进行解码处理,解码结果装在一个vector中,装的格式按照 classId,score,xmin,ymin,xmax,ymax, classId,score,xmin,ymin,xmax,ymax … 进行,每六个数据为一个检测框,对 vector 进行遍历得到检测结。

   // 后处理部分
   std::vector<float> out_scales;
   std::vector<int32_t> out_zps;
   for (int i = 0; i < io_num.n_output; ++i)
   {
       out_scales.push_back(output_attrs[i].scale);
       out_zps.push_back(output_attrs[i].zp);
   }

   int8_t *pblob[6];
   for (int i = 0; i < io_num.n_output; ++i)
   {
       pblob[i] = (int8_t *)outputs[i].buf;
   }

   // 将检测结果按照classId、score、xmin1、ymin1、xmax1、ymax1 的格式存放在vector<float>中
   GetResultRectYolov8 PostProcess;
   std::vector<float> DetectiontRects;
   PostProcess.GetConvDetectionResult(pblob, out_zps, out_scales, DetectiontRects);

   for (int i = 0; i < DetectiontRects.size(); i += 6)
   {
       int classId = int(DetectiontRects[i + 0]);
       float conf = DetectiontRects[i + 1];
       int xmin = int(DetectiontRects[i + 2] * float(img_width) + 0.5);
       int ymin = int(DetectiontRects[i + 3] * float(img_height) + 0.5);
       int xmax = int(DetectiontRects[i + 4] * float(img_width) + 0.5);
       int ymax = int(DetectiontRects[i + 5] * float(img_height) + 0.5);

       char text1[256];
       sprintf(text1, "%d:%.2f", classId, conf);
       rectangle(src_image, cv::Point(xmin, ymin), cv::Point(xmax, ymax), cv::Scalar(255, 0, 0), 2);
       putText(src_image, text1, cv::Point(xmin, ymin + 15), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 255), 2);
   }

   imwrite(save_image_path, src_image);

后处理核心部分代码如下,其中后处理代码不一定是最优的,如果有更优的写法欢迎交流。完整代码请参本实例对应的github仓库,代码和模型

int GetResultRectYolov8::GetConvDetectionResult(int8_t **pBlob, std::vector<int> &qnt_zp, std::vector<float> &qnt_scale, std::vector<float> &DetectiontRects)
{
    int ret = 0;
    if (meshgrid.empty())
    {
        ret = GenerateMeshgrid();
    }

    int gridIndex = -2;
    float xmin = 0, ymin = 0, xmax = 0, ymax = 0;
    float cls_val = 0;
    float cls_max = 0;
    int cls_index = 0;

    int quant_zp_cls = 0, quant_zp_reg = 0;
    float quant_scale_cls = 0, quant_scale_reg = 0;

    DetectRect temp;
    std::vector<DetectRect> detectRects;

    for (int index = 0; index < headNum; index++)
    {
        int8_t *reg = (int8_t *)pBlob[index * 2 + 0];
        int8_t *cls = (int8_t *)pBlob[index * 2 + 1];

        quant_zp_reg = qnt_zp[index * 2 + 0];
        quant_zp_cls = qnt_zp[index * 2 + 1];

        quant_scale_reg = qnt_scale[index * 2 + 0];
        quant_scale_cls = qnt_scale[index * 2 + 1];

        for (int h = 0; h < mapSize[index][0]; h++)
        {
            for (int w = 0; w < mapSize[index][1]; w++)
            {
                gridIndex += 2;

                if (1 == class_num)
                {
                    cls_max = sigmoid(DeQnt2F32(cls[0 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w], quant_zp_cls, quant_scale_cls));
                    cls_index = 0;
                }
                else
				{
                    for (int cl = 0; cl < class_num; cl++)
                    {
						cls_val = cls[cl * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w];

						if (0 == cl)
						{
                            cls_max = cls_val;
                            cls_index = cl;
						}
						else
						{
                            if (cls_val > cls_max)
                            {
                            	cls_max = cls_val;
                            	cls_index = cl;
                            }
						}
                    }
                    cls_max = sigmoid(DeQnt2F32(cls_max, quant_zp_cls, quant_scale_cls));
					}


                if (cls_max > objectThresh)
                {
                    xmin = (meshgrid[gridIndex + 0] - DeQnt2F32(reg[0 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w], quant_zp_reg, quant_scale_reg)) * strides[index];
                    ymin = (meshgrid[gridIndex + 1] - DeQnt2F32(reg[1 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w], quant_zp_reg, quant_scale_reg)) * strides[index];
                    xmax = (meshgrid[gridIndex + 0] + DeQnt2F32(reg[2 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w], quant_zp_reg, quant_scale_reg)) * strides[index];
                    ymax = (meshgrid[gridIndex + 1] + DeQnt2F32(reg[3 * mapSize[index][0] * mapSize[index][1] + h * mapSize[index][1] + w], quant_zp_reg, quant_scale_reg)) * strides[index];

                    xmin = xmin > 0 ? xmin : 0;
                    ymin = ymin > 0 ? ymin : 0;
                    xmax = xmax < input_w ? xmax : input_w;
                    ymax = ymax < input_h ? ymax : input_h;

                    if (xmin >= 0 && ymin >= 0 && xmax <= input_w && ymax <= input_h)
                    {
                        temp.xmin = xmin / input_w;
                        temp.ymin = ymin / input_h;
                        temp.xmax = xmax / input_w;
                        temp.ymax = ymax / input_h;
                        temp.classId = cls_index;
                        temp.score = cls_max;
                        detectRects.push_back(temp);
                    }
                }
            }
        }
    }

    std::sort(detectRects.begin(), detectRects.end(), [](DetectRect &Rect1, DetectRect &Rect2) -> bool
              { return (Rect1.score > Rect2.score); });

    std::cout << "NMS Before num :" << detectRects.size() << std::endl;
    for (int i = 0; i < detectRects.size(); ++i)
    {
        float xmin1 = detectRects[i].xmin;
        float ymin1 = detectRects[i].ymin;
        float xmax1 = detectRects[i].xmax;
        float ymax1 = detectRects[i].ymax;
        int classId = detectRects[i].classId;
        float score = detectRects[i].score;

        if (classId != -1)
        {
            // 将检测结果按照classId、score、xmin1、ymin1、xmax1、ymax1 的格式存放在vector<float>中
            DetectiontRects.push_back(float(classId));
            DetectiontRects.push_back(float(score));
            DetectiontRects.push_back(float(xmin1));
            DetectiontRects.push_back(float(ymin1));
            DetectiontRects.push_back(float(xmax1));
            DetectiontRects.push_back(float(ymax1));

            for (int j = i + 1; j < detectRects.size(); ++j)
            {
                float xmin2 = detectRects[j].xmin;
                float ymin2 = detectRects[j].ymin;
                float xmax2 = detectRects[j].xmax;
                float ymax2 = detectRects[j].ymax;
                float iou = IOU(xmin1, ymin1, xmax1, ymax1, xmin2, ymin2, xmax2, ymax2);
                if (iou > nmsThresh)
                {
                    detectRects[j].classId = -1;
                }
            }
        }
    }

    return ret;
}


4、编译运行

1)编译

cd examples/rknn_yolov8_demo_open

bash build-linux_RK3588.sh

2)运行

cd install/rknn_yolov8_demo_Linux

./rknn_yolov8_demo

注意:修改模型、测试图像、保存图像的路径,所在文件为 src 下main.cc文件。

5、板端效果

冒号“:”前的数子是coco的80类对应的类别,后面的浮点数是目标得分。(类别:得分)
在这里插入图片描述
(注:图片来源coco128)

说明:推理测试预处理没有考虑等比率缩放,激活函数 SiLU 用 Relu 进行了替换。由于使用的是coco128的128张图片数据进行训练的,且迭代的次数不多,效果并不是很好,仅供测试流程用。换其他图片测试检测不到属于正常现象,最好选择coco128中的图像进行测试。

6、模型和后处理时耗

把模型和后处理时耗贴出来,供大家参考,使用芯片rk3588。
在这里插入图片描述

2024年1月12日:后处理代码有所优化,后处理时耗由21ms降低至8ms。(检测类别越多效果越明显,检测1个类别就没有优化效果,代码已同步到对应的代码仓中)
在这里插入图片描述

  • 20
    点赞
  • 71
    收藏
    觉得还不错? 一键收藏
  • 56
    评论
YOLOv8是一个目标检测算法,而ONNX Runtime是一种用于高效运行ONNX模型的开源引擎。在这里,我们讨论如何使用ONNX Runtime C API来部署YOLOv8模型。 首先,我们需要将YOLOv8模型转换为ONNX格式。可以使用工具如torch.onnx.export将PyTorch模型转换为ONNX模型,或者使用其他可用的转换工具。确保转换后的模型与所选的ONNX Runtime版本兼容。 接下来,我们需要在C环境中使用ONNX Runtime来加载和运行模型。首先,我们需要包含ONNX Runtime的头文件,并链接相应的库文件。 然后,我们可以通过以下步骤来加载和运行YOLOv8 ONNX模型: 1. 创建一个ONNX Runtime的会话(session)对象。 2. 使用会话对象读取ONNX模型文件,并将其加载到内存中。 3. 获取输入和输出的名称和维度。通过查询模型的输入和输出节点的信息,我们可以获得它们的名称和维度信息。 4. 创建用于存储输入和输出数据的缓冲区。我们可以使用ONNX Runtime提供的API来创建和管理这些缓冲区。 5. 将实际输入数据填充到输入缓冲区中。根据模型的输入维度和数据类型,我们可以将输入数据复制到输入缓冲区中。 6. 使用会话对象运行模型。通过调用ONNX Runtime的API函数,我们可以将输入缓冲区传递给模型,并获取输出缓冲区的结果。 7. 从输出缓冲区中获取模型的预测结果。根据模型输出的维度和数据类型,我们可以从输出缓冲区中获取预测结果。 8. 对预测结果进行后处理和解码,以获得最终的目标检测结果。 通过以上步骤,我们就可以使用ONNX Runtime C API来部署YOLOv8模型。这种部署方式可以在嵌入式系统或其他资源有限的环境中使用,以实现高效的目标检测功能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 56
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值