UNetMultiLane 多车道线、车道线类型识别【训练+部署】

  基于UNet 分割模型增加了检测头来识别车道线的类型(单实线、双黄线等10种),同时可以识别出"所在车道"和"车道线类型"。

训练代码【训练练手代码】

1 数据说明

  基于开源数据集 VIL100。其中数据标注了所在的六个车道的车道线和车道线的类型。

  8条车道线(六个车道),对应的顺序是:7,5,3,1,2,4,6,8。其中1,2对应的自车所在的车道,从左往右标记。

  车道线的类别(10个类别):单条白色实线、单条白色虚线、单条黄色实线、单条黄色虚线、双条白色实线、双条黄色实线、双条黄色虚线、双条白色实虚线、双条白色黄色实线、双条白色虚实线。

说明示例:

train.txt

/JPEGImages/0_Road001_Trim003_frames/00045.jpg /Annotations/0_Road001_Trim003_frames/00045.png 0 0 0 1 1 1 1 1 0 0 0 1 2 10 2 1


标签说明: 
/JPEGImages/0_Road001_Trim003_frames/00045.jpg 图片 

/Annotations/0_Road001_Trim003_frames/00045.png 分割标签(png的p模式存储的标签)

0 0 0 1 1 1 1 1 0 0 0 1 2 10 2 1 共十六个值,前8个是对应的车道(8条车道线,对应的顺序是7,5,3,1,2,4,6,8),后8个值是线的类别(10个类别)

0 0 0 1 1 1 1 1(共8条车道线,左起前三条000无车道线,11111有到车道)

0 0 0 1 2 10 2 1(每条车道线对应的类型,左起前三条000无车道线,1 2 10 2 1分别对应的车道线类型)

00045.jpg 图像
在这里插入图片描述
00045.png 分割标签
在这里插入图片描述

2 模型结构

  基于UNet 分割模型增加了检测头来识别车道线的类型(单实线、双黄线等10种),可以识别出"所在车道"和"车道线类型"。
在这里插入图片描述

  分割输出头9个通道,1(没有车道线)+8个条车道;车道线类型输出头8x11,8条车道是11种(1+10)的哪种线型。

3 分割效果

在这里插入图片描述
在这里插入图片描述

4 部署参考

onnx、tensorRT、RKNN、Horzion 部署

rk3588板端部署参考C++代码

### UNet 车道线分割代码实现 UNet架构因其强大的性能,在车道线分割领域得到了广泛应用。下面提供了一个基于PyTorch框架的简化版UNet模型用于车道线分割的任务,该模型遵循编码器-解码器结构并加入了跳跃连接来增强特征提取能力[^5]。 ```python import torch import torch.nn as nn import torchvision.transforms.functional as TF class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels): super().__init__() self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class UNet(nn.Module): def __init__(self, n_channels, n_classes): super(UNet, self).__init__() bilinear = True factor = 2 if bilinear else 1 self.inc = DoubleConv(n_channels, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512 // factor) self.up1 = Up(512, 256 // factor, bilinear) self.up2 = Up(256, 128 // factor, bilinear) self.up3 = Up(128, 64, bilinear) self.outc = OutConv(64, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x = self.up1(x4, x3) x = self.up2(x, x2) x = self.up3(x, x1) logits = self.outc(x) return logits class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/issues/2 # https://github.com/xiaopeng-liao/Pixel-Shuffle/issues/1 x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) ``` 此段代码定义了完整的UNet网络结构,其中包含了双层卷积模块`DoubleConv`, 下采样操作`Down`, 上采样操作`Up`以及最终输出转换层`OutConv`. 特别注意的是,对于车道线分割任务而言,最后一层输出通道数应当设置为目标类别数目加上背景类别的数量。例如,在处理具有白色线条和黄色线条两种类型车道线时,则应将`n_classes`设为3 (即两个前景类别加一个背景)[^2]. 为了适应特定应用场景下的需求,比如车道线识别类型车道线分类等问题,可以调整上述代码中的参数配置以匹配具体的数据集特性[^1]. 此外,考虑到实际应用环境可能存在的计算资源限制情况,还可以考虑引入轻量化设计思路优化现有模型结构,使其更适合于边缘设备上的实时推理任务[^4].
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值