Relief特征选择与matlab实现

特征选择是一个重要的数据预处理过程
(1)首先数据属性过多容易造成维度灾难,造成学习过程困难。
(2)去除不相关特征,只留下关键因素,则真相更容易看清。
特征选择的目的就是在样本的众多特征中选出有助于样本分类的属性。那么那些属性有助于样本分类呢?我们将对样本的每一个属性进行重要性评价。
Relief 借用了“假设间隔”(hypothesis margin hypothesis marginhypothesis\ margin)的思想,我们知道在分类问题中,常常会采用决策面的思想来进行分类,“假设间隔”就是指在保持样本分类不变的情况下,决策面能够移动的最大距离,可以表示为:
在这里插入图片描述
直观上,一个属性属性有助于分类,则样本在该属性上与同类的距离近,与异类的距离远。根据公式1的启发我们得到公式2
在这里插入图片描述
附上matlab程序

function [w]=Relief(data,label,class,k)
%data数据
%label数据标签
%class数据类别个数
%k近邻个数

%w属性的重要程度
[m,n]=size(data);
for j=1:n

for i=1:class
Di_index=find(label==i);
Dni_index=find(label~=i);
Di=data(Di_index
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值