最速下降法和牛顿方法的Python实现和MATLAB实现

本文介绍了数值最优化方法,通过Python和MATLAB实现最速下降法及牛顿法,寻找二元函数的局部极小值。Python实现在迭代过程中逐步逼近目标,MATLAB实现则提供了便捷的调用方式。两种方法各有优势,适用于不同的应用场景。
摘要由CSDN通过智能技术生成

算法来源:《数值最优化方法~高立》

算法目的:实现函数的局部最优化寻找,以二元函数为例,展示了最速下降法和牛顿寻优的算法过程

主要Python模块:numpy,sympy

(1)Python实现

(2)MATLAB实现

(3)比较

(1)Python实现

A 最速下降法

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 01 15:01:54 2016
@author: zhangweiguo
"""
import sympy,numpy
import math
import matplotlib.pyplot as pl
from mpl_toolkits.mplot3d import Axes3D as ax3
#最速下降法,二维实验
def SD(x0,G,b,c,N,E):
	f = lambda x: 0.5 * (numpy.dot(numpy.dot(x.T, G), x)) + numpy.dot(b.T, x) + c
	f_d = lambda x: numpy.dot(G, x)+b
	X=x0;Y=[];Y_d=[];
	xx=sympy.symarray('xx',(2,1))
	n = 1
	ee = f_d(x0)
	e=(ee[0]**2+ee[1]**2)**0.5
	Y.append(f(x0)[0,0]);Y_d.append(e)
	a=sympy.Symbol('a',real=True)
	print '第%d次迭代:e=%d' % (n, e)
	while n<N and e>E:
		n=n+1
		yy=f(x0-a*f_d(x0))
		yy_d=sympy.diff(yy[0,0],a,1)
		a0=sympy.solve(yy_d)
		x0=x0-a0*f_d(x0)
		X=numpy.c_[X,x0]
		Y.append(f(x0)[0,0])
		ee = f_d(x0)
		e = math.pow(math.pow(ee[0,0],2)+math.pow(ee[1,0],2),0.5)
		Y_d.append(e)
		print '第%d次迭代:e=%s'%(n,e)
	return X,Y,Y_d
if __name__=='__main__':
	G=numpy.array([[21.0,4.0],[4.0,15.0]])
	b=numpy.array([[2.0],[3.0]])
	c=10.0
	f = lambda x: 0.5 * (numpy.dot(numpy.dot(x.T, G), x)) + numpy.dot(b.T, x) + c
	f_d = lambda x: numpy.dot(G, x) + b
	x0=numpy.array([[-30.0],[100.0]])
	N=40
	E=10**(-6)
	X, Y, Y_d=SD(x0,G,b,c,N,E)
	X=numpy.array(X)
	Y=numpy.array(Y)
	Y_d=numpy.array(Y_d)
	figure1=pl.figure('trend')
	n=len(Y)
	x=numpy.arange(1,n+1)
	pl.subplot(2,1,1)
	pl.semilogy(x,Y,'r*')
	pl.xlabel('n')
	pl.ylabel('f(x)')
	pl.subplot(2,1,2)
	pl.semilogy(
松弛牛顿法是一种优化算法,它在解决大型、稀疏线性系统时特别有效,尤其是在求解大规模最小二乘问题或者机器学习中的梯度下降时。该方法结合了牛顿法的局部快速收敛性和拉格朗日松弛技术的优点,可以处理约束条件,减少迭代次数。 牛顿法通常用于寻找函数的局部最小值,通过构建并求解目标函数的一阶导数(Hessian矩阵)的逆更新步长。但在存在约束的情况下,直接求逆可能会导致数值不稳定。松弛牛顿法通过引入松弛变量,将约束转化为等价的光滑函数,使得Hessian在每个步骤都变得正定,从而更容易求解。 以下是PythonMatlab中松弛牛顿法的一个简单示例: **Python 示例**(假设我们有一个简单的二次函数最小化问题,并有线性约束): ```python import numpy as np def func(x): return x[0]**2 + x[1]**2 def constraint(x): return x[0] + x[1] - 1 # 初始化 x0 = np.array([2., 3.]) A = np.array([[1., 1.]]) b = np.array([1.]) # 定义Hessian矩阵 H = np.diag([2., 2.]) # 设置松弛因子 rho = 1e-4 while True: dx = scipy.sparse.linalg.spsolve(H + rho * A.T @ A, -H @ x0) if constraint(x0 + dx) <= 0 or np.allclose(constraint(x0), 0): # 满足约束或接近满足 break x0 += dx print("Optimal solution:", x0) ``` **Matlab 示例**(同样的问题): ```matlab function [x, fval, exitflag] = relaxed_newton(fcn, gradFcn, hessFcn, x0, A, b, rho) % ... (定义函数、梯度和Hessian计算) % 初始点 x = x0; % 开始循环 while true % 解新点 dx = inv(hessFcn(x) + rho * A'*A) * (-hessFcn(x)); % 检查是否满足约束或近似满足 if abs(constraint(x + dx)) < tolerance || isequal(constraint(x), 0) break; end x = x + dx; end % 结果输出 x_opt = x; end ``` 请注意,实际应用中会需要更完整的数学库(如scipy在Python中或内置函数在Matlab中),以及对特定问题调整Hessian矩阵和约束处理部分。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值