MDS算法

非常传统的降维的方法,以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小,更新的方法是T-SNE,基于分布概率变化最小进行投影。

假定原始高维数据样本的距离矩阵为D,则在低维下的距离矩阵为Z,我们可以用优化算法选取初始点,用梯度下降法求最佳逼近,使得||D-Z||最小,同时,也可以利用內积来求的低维映射。前者在样本较多时容易陷入局部最优,后者较稳定,但在样本不多时,效果比前者要差。

算法如下:



评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值