非常传统的降维的方法,以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小,更新的方法是T-SNE,基于分布概率变化最小进行投影。
假定原始高维数据样本的距离矩阵为D,则在低维下的距离矩阵为Z,我们可以用优化算法选取初始点,用梯度下降法求最佳逼近,使得||D-Z||最小,同时,也可以利用內积来求的低维映射。前者在样本较多时容易陷入局部最优,后者较稳定,但在样本不多时,效果比前者要差。
算法如下:
非常传统的降维的方法,以距离为标准,将高维坐标中的点投影到低维坐标中,保持彼此之间的相对距离变化最小,更新的方法是T-SNE,基于分布概率变化最小进行投影。
假定原始高维数据样本的距离矩阵为D,则在低维下的距离矩阵为Z,我们可以用优化算法选取初始点,用梯度下降法求最佳逼近,使得||D-Z||最小,同时,也可以利用內积来求的低维映射。前者在样本较多时容易陷入局部最优,后者较稳定,但在样本不多时,效果比前者要差。
算法如下: