第四章 线性方程组
4.1 高斯消元法
基本概念
基本上,研究矩阵和线性代数,就是为了求解方程组,三种基本的矩阵变换也是和方程的变换相等价的,如交换两组方程组的位置,把方程的两边同时乘以一个非零常数,方程组的叠加等,都不会改变方程的解。
高斯消元法(用初等变换求线性方程组的解)
利用初等变换,可以把增广矩阵转化成三角矩阵,然后对应到方程中再用消元法求解。
齐次线性方程组只有零解,或者有无数解;非齐次线性方程组可能无解,可能只有一个确定的解,也可能有无数解。
4.2 线性方程组解的结构、性质和判定
齐次线性方程组 Am×nx=0 的基础解系
当矩阵 Am×n 不满秩时,即 |A|=0 ,该方程组有无数解,我们可以用一组基础解系来表示这些解。
若有向量组 α1,α2,⋯,αs 线性无关,且齐次线性方程组 Am×nx=0 的任一解都可以由其线性表示出来,那么称 α1,α2,⋯,αs 是 Am×nx=0 的一组基础解系。
基础解系可能有无数个,且其中向量组的个数