线性代数复习 第四章 线性方程组

本章深入探讨线性方程组,涵盖高斯消元法及其在求解线性方程组中的应用。讨论了齐次线性方程组和非齐次线性方程组的解的结构、性质和判定定理。通过初等变换将增广矩阵转换为三角形,以求解方程。解的空间结构取决于矩阵的秩,行列式和基础解系的角色至关重要。
摘要由CSDN通过智能技术生成

第四章 线性方程组

4.1 高斯消元法

基本概念

基本上,研究矩阵和线性代数,就是为了求解方程组,三种基本的矩阵变换也是和方程的变换相等价的,如交换两组方程组的位置,把方程的两边同时乘以一个非零常数,方程组的叠加等,都不会改变方程的解。

高斯消元法(用初等变换求线性方程组的解)

利用初等变换,可以把增广矩阵转化成三角矩阵,然后对应到方程中再用消元法求解。

齐次线性方程组只有零解,或者有无数解;非齐次线性方程组可能无解,可能只有一个确定的解,也可能有无数解。

4.2 线性方程组解的结构、性质和判定

齐次线性方程组 Am×nx=0 的基础解系

当矩阵 Am×n 不满秩时,即 |A|=0 ,该方程组有无数解,我们可以用一组基础解系来表示这些解。

若有向量组 α1,α2,,αs 线性无关,且齐次线性方程组 Am×nx=0 的任一解都可以由其线性表示出来,那么称 α1,α2,,αs Am×nx=0 的一组基础解系

基础解系可能有无数个,且其中向量组的个数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值