Motifs与Graphlets

目录

引入

Subgraphs

Network motifs

1.定义

2. 检测motifs

3.motifs 概念的变体

graphlets

如何找到modifs与graphlets


引入

Subnetworks是构建网络的模块,它们可以表征网络的结构与区分不同的网络。

下图中的子图是(每一个和其他的都不同)异构的,且都是连通的、有不同数量的边、边的方向不同

1.对于每一个子图:想象有一个矩阵可以区分子图的”significance“

  • 负值表明 under-representation
  • 正值表明 over-representation

2.创建一个network significance profile

是一个具有所有子图significance值的feature vector

3.通过比较network significance profile区分不同的图

 从图中可以看出来自相同领域的网络有相似的significance profile;不同领域的significance profile值不同

 

Subgraphs

Network motifs

1.定义

network motifs:

  • pattern:小的诱导子图(图 G 的诱导子图是由图 G 的顶点的子集 X 和连接子集 X 中顶点对的所有边组成的图。)
  • Recurring:出现的频率很高
  • Significant:比预期出现的更频繁(预期是指和null model相比,最简单的null model可能就是ER随机图等,但更好的是和图中的度数保持一致)

(1)pattern小的诱导子图:

图中红色三角形里不是motifs因为它不是诱导子图

(2)Recurrence:

允许重叠的overlapping motifs,图中感兴趣的motif有四次occurrences

 (3)Significance

(3.1)思想:在真实世界中比随机网络中出现更频繁的子图有功能significance

图中的motif在真是网络中出现比随机图中出现频繁——over-presentation

(3.2)计算significance

  •  Motifs在真实网络和随机网络(null model)相比是overrepresented

Z_{i}定义了统计意义的motif i的重要性

SP是一个归一化的Z-scores向量,为什么归一化?因为SP强调了子图的相对significance:   

      比较不同规模网络的importance,通常网络规模越大Z-score的分数越大(则比较两个网络的significance不知道是因为本来motifs频率大还是网络规模大)            

  •  Configuration Model——在计算significance时如何构造null model(零模型)
    • 构造方法一:随机连接   

构造出与真实网络有相同degree sequence的null model  

 忽略随机连节点对时可能出现double边或self-loops,虽然可能产生degree sequence不同了,但当网络规模很大时,可以近似相等。

   

  •  构造方法二:随机交叉 

        随机选择一对边,然后重连两个边,交叉两个点。 生的随机图的节点的度,不发生改变。但计算的代价会较高,运行慢。 为了保证随机图的随机性,需要运行的次数为 Q * E 次,其中Q应尽可能的大,如100。

2. 检测motifs

  • 计算真实网络中子图i
  • 计算构造的随机图中子图i(有多个随机图,每个随机图和真实网络有i谢娜沟通的节点边数和度分布)
  • 计算Z-score,进一步归一化为SP,得分高的为网络的modif

3.motifs 概念的变体

graphlets

motifs是描述整个网络,整个网络有什么组成

graphlets是在一个给定节点周围描述整个网络

graphlets:rooted(基于给定节点)连通的异构子图与motifs区分

 引入GDV:计算一个节点参与的小图的数量

 GDV——是一个根植于给定节点的子图的数量向量

因为graphlets是诱导子图( induced subgraph 节点的所有连接都要包含在内),所以节点在位置c不行,另两个节点必须要连接。

GDV提供了一种测量节点局部网络拓扑的方法,通过比较两个节点的GDV提供了一种比node degree和聚类系数更细节的测量局部拓扑相似性的方法。

如何找到modifs与graphlets

  • 困难

找到size-k的modifs/graphlets需要解决两个挑战:枚举与计数。这两个计算很困难,计算时间久,因此只能找到小型的modifs/graphlets

  •  使用ESU枚举所有k-size modifs/graphlets

  •  Use ESU-Tree to Count Subgraphs

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值