IMF: Interactive Multimodal Fusion Model for Link Prediction

[2303.10816] IMF: Interactive Multimodal Fusion Model for Link Prediction (arxiv.org)

目录

1 背景

2 贡献

3 模型

3.1 Overall Architecture

3.2 Modality-Specific Encoders

3.3 Multimodal Fusion

3.4 Contextual Relational Model

3.5 Decision Fusion

3.6 Inference


1 背景

为了获得更好的结果,一些研究方法将多模态信息引入到连接预测。但是这些研究将所有模态投影到一个统一空间中,具有相同的关系来捕捉共性,可能无法保证每个模态中的特定信息;这些方法分别利用多模态信息,忽略不同模态之间的复杂交互,无法捕捉互补性。

2 贡献

作者提出了一种新的交互式多模式融合模型(IMF),用于知识图上的多模式链接预测。

IMF可以在每个模态中单独学习知识,并通过两阶段融合对不同模态之间的复杂交互进行联合建模,类似于人类自然识别过程。

在多模态融合阶段,采用双线性融合机制,通过对比学习充分捕捉多模态特征之间的复杂交互。

对于基本链路预测模型,作者利用关系信息作为上下文来对三元组进行排序,作为每个模态中的预测。

在最终决策融合阶段,作者整合来自不同模态的预测,并利用互补信息进行最终预测。

文章的贡献如下:

(1)提出了一种新的两阶段融合模型IMF,该模型能够有效地整合不同模式的互补信息,用于链路预测。

(2)设计了一个有效的多模态融合模块,通过对比学习来捕捉双线性交互,从而对共性和互补性进行联合建模。

(3)在四个广泛使用的多模态链路预测数据集上进行了大量实验,证明了IMF的有效性和通用性

3 模型

一个知识图谱被定义为\mathcal G = <\mathcal E,\mathcal R,\mathcal T>,每个实体由来自不同模态的多个特征表示\mathcal K=\{s,v,t,m\},s,v,t,m分别示图结构模态、视觉模态、文本模态和多模态模态。链接预测模型期望学习关系三元组的得分函数,以估计三元组的可能性。

3.1 Overall Architecture

IMF由四个关键组件组成:

(1)模态特定编码器用于提取结构、视觉和文本特征,作为多模态融合阶段的输入。

(2)多模态融合模块是第一个融合阶段,它基于Tucker分解和对比学习对不同模态之间的双线性相互作用进行了有效建模。

(3)上下文关系模型计算上下文实体表示的相似性,以将三元组得分公式化为决策融合阶段的模态特定预测。

(4)决策融合模块是第二个融合阶段,它考虑了结构、视觉、文本和多模态模型的所有相似性得分,以进行最终预测。

3.2 Modality-Specific Encoders

Structural Encoder作者使用了TransE损失的GAT,并采用了对比损失。Visual Encoder使用VGG16。Textual Encoder使用BERT。

3.3 Multimodal Fusion

多模态融合阶段旨在有效地获得多模态表示,充分捕捉不同模态之间的复杂交互。许多现有的多模态融合方法已经在许多任务中取得了有希望的结果,然而,他们中的大多数人旨在通过模态投射或跨模态注意力来寻找共性,以获得更精确的表示。这些类型的方法将遭受不同模态中独特信息的损失,并且无法实现模态之间的充分交互。因此,作者使用双线性模型进行多模态信息融合,因为双线性模型具有很强的实现全参数交互的能力。

作者基于Tucker分解的方法,结构,视觉,文本模态的实体嵌入e_{s},e_{v},e_{t}首先被投影到低维空间中,作者通过分解核心张量进一步降低复杂度,通过将所有模态的表示合并到具有逐元素乘积的统一空间中,得到每个实体的多模态表征向量e_{m}。(原来的结构,视觉,文本的实体嵌入在不同空间中,通过投影矩阵投影到相同的低维空间中)。

然后,文章对于三个模态中两两进行对比学习,正样例是不同模态之间的相同实体i,负样例是不同实体i与j

3.4 Contextual Relational Model

对于每一个模态k,作者在实体和关系嵌入之间使用双线性外积(因为它提高参数的交互),将上下文信息合并到实体表示中。利用关系在实体嵌入的转换矩阵中提供上下文,然后使用上下文转换矩阵来投影实体嵌入(转换矩阵等于权重矩阵乘关系向量,再加上偏差),从而获得上下文嵌入

上下文嵌入用于计算与所有候选实体的相似性。预测损失函数是交叉熵损失。

3.5 Decision Fusion

决策融合阶段的损失函数等于每个模块单独的预测损失式(9)和两两之间的对比学习损失式(6)的加权和。

3.6 Inference

作者联合考虑每个模态的预测以及多模态的预测的加权和。

最后,总体的算法流程为

### Myriad 大型多模态模型在工业异常检测中的应用 Myriad 是一种新型的大型多模态模型,专门针对工业异常检测问题进行了优化设计。该模型的核心理念在于通过引入“视觉专家”来增强其对异常特征的学习能力,并将其与强大的多模态主干网络相结合[^3]。 #### 模型结构与功能 Myriad 的架构具有高度模块化的特性,允许灵活地集成不同的视觉专家组件。这些视觉专家能够识别并突出图像中的关键区域,从而帮助模型更好地捕捉异常特征。具体而言,Myriad 将来自不同领域(如纹理分析、形状匹配等)的专业知识融入到统一框架中,使得它不仅具备传统工业异常检测方法的优势,还继承了大规模多模态模型的强大泛化能力和指令遵循能力[^1]。 #### 数据效率与灵活性 相比于传统的单一任务模型或通用的大规模语言/视觉模型,Myriad 展现出更高的数据效率和更好的适应性。这主要得益于以下几个方面: - **专业知识融合**:通过对已有工业异常检测技术的有效利用,减少了对额外标注数据的需求。 - **模块化扩展**:由于采用了可插拔的设计思路,因此可以根据实际应用场景轻松调整配置而不必完全重训整个系统[^4]。 #### 实验验证与表现 为了评估 Myriad 的有效性,在多个公开可用的数据集上开展了广泛测试,包括但不限于 MVTec AD、VisA 和 PCB Bank 基准测试集合。结果显示,在单样本学习以及少量样例支持的情况下,相比其他先进方案均取得了显著改进的效果指标得分[^2]。 ```python # 示例代码展示如何加载预训练好的 Myriad 模型用于新项目开发阶段快速原型构建过程的一部分逻辑片段 from myriad import load_pretrained_model, detect_anomalies model = load_pretrained_model('myriad_vision_expert') test_images = ['path/to/image1.png', 'path/to/image2.jpg'] results = detect_anomalies(model=model, images=test_images) for result in results: print(f"Image {result['image']} has anomaly score of {result['score']}") ``` 上述脚本演示了一个简单的例子说明怎样调用预先训练完成后的 Myriad 来执行基本的任务操作流程——即给定一批待测图片文件路径列表之后返回每张图对应的异常评分数值结果。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值