cs224w(图机器学习)2021
文章平均质量分 90
huihui12a
这个作者很懒,什么都没留下…
展开
-
CS224W 8 GNN Augmentation andTraining
目录 Graph Augmentation for GNNs引入Why Graph AugmentationGraph Augmentation ApproachesFeature Augmentation on Graphs Input graph没有node featuresGNN很难学习的一些特定结构Graph Structure augmentationAugment sparse graphs——添加虚拟节点或边Node Neighborhood SamplingPrediction with G原创 2022-12-03 18:16:35 · 836 阅读 · 0 评论 -
CS224W 7 A General Perspective on Graph Neural Networks
单层layer与多层GNN layers原创 2022-11-25 21:29:29 · 775 阅读 · 0 评论 -
CS224W 6 Graph Neural Networks
这些节点的计算图或神经网络结构是基于邻居节点定义的,由于节点顺序是任意的,因此聚合运算要具有排列不变性,原创 2022-11-21 17:03:47 · 355 阅读 · 0 评论 -
CS224W 4 Graph as Matrix: PageRank,Random Walks and Embeddings
本课从对图进行分析可以发现random walk、MF、node embeddings是相关的。原创 2022-11-12 20:44:52 · 520 阅读 · 0 评论 -
CS224W 3.3 Embedding Entire Graphs
聚类或社区检测,对节点嵌入进行聚类节点分类:基于节点嵌入预测节点i的标签链接预测:基于(,)预测(i,j)之间的边利用节点的嵌入图分类:图嵌入通过聚合节点嵌入或者利用anonymous random walks。可以用来预测标签。第三课讨论了graph representation learning,与传统的方法不同,不需要特征工程,可以学习节点嵌入和图嵌入用于下游任务。原创 2022-11-07 22:24:54 · 499 阅读 · 0 评论 -
CS224W 3.2 Random Walk Approaches for Node Embeddings
random walk:给定一个图和一个起始节点,随机选择一个邻居节点,移动到邻居节点,随机选择这个邻居节点的 邻居节点(也可以移动到上一步经过的点),移动到它,持续下去直到给定步长。灵活的相似性的定义:考虑了局部邻居和高阶(出现次数多)的邻居信息,如果从u开始的随机游走访问v的概率大(high-order multi-hop information),那么两者具有相似性。估计使用某种随机游走策略,从一个初始节点的random walk访问节点v的概率,优化嵌入。是要找到的节点u的嵌入。原创 2022-11-07 21:05:16 · 598 阅读 · 0 评论 -
CS224W 13 Community Detection in Networks
网络是由紧密连接的多个节点集构成的。网络社区的概念:节点集具有大量内部连接和少量的外部连接(和网络其他部分的连接)如何自动找到紧密连接的节点组?理想上紧密连接的节点组和真实的节点组相对应。原创 2022-11-04 10:29:36 · 549 阅读 · 0 评论 -
Motifs与Graphlets
pattern:小的诱导子图(图 G 的诱导子图是由图 G 的顶点的子集 X 和连接子集 X 中顶点对的所有边组成的图。)Recurring:出现的频率很高Significant:比预期出现的更频繁(预期是指和null model相比,最简单的null model可能就是ER随机图等,但更好的是和图中的度数保持一致)(1)pattern小的诱导子图:图中红色三角形里不是motifs因为它不是诱导子图。原创 2022-11-01 16:27:34 · 1058 阅读 · 0 评论 -
CS224W 3.1 Node Embedding
给定一个图,提取features(node edge graph-level features),然后学习一个模型,最终将这个模型用于预测。时间大多花费在特征工程中(为了能找到最好描述网络的特征,最后将特征用在下流预测任务)。节点连接;共享邻居节点;有相同的结构性作用......之后介绍使用random walks的系欸但相似性度量。原创 2022-10-31 11:29:31 · 333 阅读 · 0 评论 -
CS224W2.1 Traditional Feature-based Method-Node
Importance-based features:捕获节点在图中的重要性node degree:只计算了节点邻居节点的数量Node centrality:可以区别对待邻居节点Models importance of neighboring nodesStructure-based features:捕获节点局部邻域的拓扑结构node degree:只计算了节点邻居节点的数量聚类系数:用来评价节点周围邻居节点的连接程度GDV:计数不同的graphlets的数量v。原创 2022-11-01 09:28:40 · 298 阅读 · 0 评论