MLaPP: 01 Introduction

types of machine learning:

  1. predictive or supervised learning
  2. descriptive or unsupervisoed learning
  3. reinforcement learning

supervised learning:

classification:

inputs: x

outputs: y

where , with C being the number of classes (if C=2: binary classification; C>2: multiclass classification)

goal: learn the unknown function f(), given the labeled training data set, and then make predictions using  (the hat symbol here used to denote an estimate).

real-world applications:

  • document classification and email spam filtering
  • classifying flowers
  • image classifcation and handwriting recognition
  • face detection and recognition

regression:

regression is just like classification except the response variable is continuous.

unsupervised learning:

in unsupervised learning, only the outputs are given without any inputs. --> knowledge discovery

applications:

  • discovering clusters
  • discovering latent factors
  • discovering graph structure
  • image inpainting

basic concepts in ML:

  • parametric vs non-parametric models: if a model has a fixed number of parameters, then it's a parametric model; if the number of parameters grows with the amount of data, then it's non-parametric model.

       parametric model: faster to use, but under the strong assumption about the nature of the data distributions.

       non-parametric model: more flexible but also more computations

  • linear regression: a linear response to the inputs

  • logistic regression: this is to generalize linear regression to the (binary) classification setting by making two changes: first we replace the Gaussian distribution for y with a Bernoulli distribution (more suitbale for cases when response is binary, y={0,1}):

       second, we compute a linaer combination of the inputs, but then we pass this through a (nonlinear) function that ensures   by defining:

so the logistic regression is obtained as (note: though it's called regression, it's still a form of classification):

  • overfitting: avoid trying to model every minor variation in the input since this is more likely to be noise than true signals.

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值