联邦学习加速方法

联邦学习的模型训练涉及模型的本地迭代更新和模型参数的传输两大过程,模型计算和通信传输成为影响联邦学习效率的两大因素。联邦学习是分布式机器学习的一种实现形式,很多分布式的加速方案依旧适用该场景。
在计算和通信两大因素中,通信效率的优化显得比计算性能的优化复杂和困难得多,因为从计算机系统的角度看,边缘端设备的算力水平在不断提高,如今的深度学习训练往往采用GPU甚至TPU这样的高性能专业芯片。但网络通信,一方面受网络带宽的影响,另一方面由于联邦学习的客户端分布具有跨地域的特点,使得格客户端之间的通信延迟提高,设备间通信失败的风险比一般的分布式学习大。因此,当前联邦学习效率的优化趋势是将尽可能多的计算放在边缘端设备中进行,以尽可能减少各参与者之间的数据传输。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GoldMinnie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值