好的,结合您对 Backtrader, VectorBT, Zipline, vnpy, wtpy, qlib, WonderTrader, Hikyuu, PyBroker 等库的了解,以及针对国内市场的需求,我为您设计一套全新的 Python 开源量化交易框架方案。
项目名称(暂定): DragonQuant
(寓意中国龙 + 量化)
项目愿景: 打造一个高性能、易扩展、功能全面、深度契合国内市场特点的 Python 开源量化交易框架,赋能个人和小型机构开发者,促进国内量化生态发展。
设计方案目录
- 引言
- 1.1 项目背景与动机
- 1.2 解决的核心痛点
- 1.3 设计目标与愿景
- 设计原则
- 2.1 性能优先
- 2.2 易用性与灵活性平衡
- 2.3 模块化与可扩展性
- 2.4 贴近实战与本地化
- 2.5 开放与社区驱动
- 目标用户与典型场景
- 3.1 个人量化爱好者/研究员
- 3.2 小型私募/量化团队
- 3.3 金融科技教学与研究
- 3.4 典型场景:策略研发、精细回测、仿真交易、实盘交易
- 现有框架优缺点借鉴
- 4.1 Backtrader: 强大的回测细节控制,但性能瓶颈,向量化支持弱
- 4.2 VectorBT: 极致的向量化性能,但事件驱动逻辑复杂,实盘支持弱
- 4.3 Zipline: 优秀的 Pipeline API,但已停止维护,环境配置复杂
- 4.4 vnpy/wtpy: 成熟的实盘(尤其CTP)支持,模块化,但回测引擎相对简单,性能一般
- 4.5 qlib: 强大的数据管理和AI集成,但框架较重,学习曲线陡峭
- 4.6 WonderTrader/Hikyuu: C++核心高性能,但Python接口封装可能牺牲部分灵活性,社区相对小众
- 4.7 PyBroker: 简洁的向量化回测思路
- 4.8 核心借鉴思路: 融合 Backtrader 的精细回测控制、VectorBT 的向量化加速思想、vnpy/wtpy 的实盘接口与模块化、qlib 的数据处理理念,并加入针对国内市场的深度优化。
- 核心架构设计 (DragonQuant Architecture)
- 5.1 分层设计: 接口层、核心层、引擎层、数据层、驱动层
- 5.2 双引擎驱动:
- 事件驱动引擎 (Event Engine): 类似 Backtrader/vnpy,负责精细回测、仿真和实盘交易,支持 Tick/Bar 级别事件处理,保证逻辑的准确性和实战模拟度。
- 向量化引擎 (Vectorized Engine): 类似 VectorBT,用于快速原型设计、参数扫描、多标的组合分析,侧重计算速度和效率。两者可独立使用,也可结合(如向量化引擎进行初步筛选,事件驱动引擎进行精细验证)。
- 5.3 核心组件图 (示意)
+---------------------+ +---------------------+ | Strategy API | ---- | User Strategy | +---------------------+ +---------------------+ | | V V +---------------------+ +-------------------------+ | Core Components | | Vectorized Components | | (Portfolio, Risk, |<-----| (Fast Portfolio Calcs,| | Order Management) | | Signal Generation) | +---------------------+ +-------------------------+ | | | V V V +---------------------+ +---------------------+ | Event Engine | | Vectorized Engine | | (Backtest/Live) | | (Fast Backtest) | +---------------------+ +---------------------+ | | V V +---------------------------------------------------+ | Data Center Module | | (API Wrapper, Storage, Cache, Cleaning, Align) | +---------------------------------------------------+ | V +---------------------------------------------------+ | Broker/Datafeed Driver Interface | | (CTP, Stock Sim, Tushare, Wind, Local Files...) | +---------------------------------------------------+
- 模块详解
- 6.1 数据中心 (Data Center)
- 目标:统一、高效、易扩展的数据接入和管理。
- 功能:
- 多种数据源接口封装 (CSV, HDF5, Parquet, 数据库, Tushare, Baostock, Wind(需授权), RQData, UQER 等)。
- 国内市场日历、交易时间、合约信息、除权除息处理。
- 数据清洗、对齐、频率转换(Resample)。
- 高性能数据缓存机制 (内存、磁盘)。
- 支持本地化存储方案。
- (借鉴 qlib) 可选的特征工程基础库。
- 6.2 策略接口 (Strategy API)
- 目标:简洁、直观、易于上手,同时支持复杂逻辑。
- 功能:
- 提供清晰的生命周期函数 (
__init__
,on_init
,on_start
,next
/on_bar
/on_tick
,on_order
,on_trade
,on_stop
等)。 - 统一的下单接口 (
buy
,sell
,short
,cover
),支持不同市场和订单类型 (市价、限价、FAK/FOK)。 - 内置常用技术指标库 (TA-Lib 封装,或自研高性能指标库)。
- 支持参数化策略,方便优化。
- 易于访问当前持仓、资金、行情数据。
- (可选) 提供向量化策略风格的 API 接口,便于与向量化引擎集成。
- 提供清晰的生命周期函数 (
- 6.3 事件驱动引擎 (Event Engine)
- 目标:高仿真度回测与稳定实盘运行。
- 核心:事件循环 (Event Loop),支持
asyncio
异步处理。 - 组件:时间管理器、事件队列、事件分发器。
- 回测模式:
- 支持 Bar 级别和 Tick 级别回测。
- 精细的撮合模拟(价格、滑点、成交量限制)。
- 手续费、印花税模型(可配置)。
- 保证金计算(期货/期权)。
- 严格避免未来函数 (Look-ahead bias)。
- 实盘模式:
- 连接行情和交易通道。
- 实时事件处理。
- 断线重连、错误处理机制。
- 6.4 向量化引擎 (Vectorized Engine)
- 目标:极速策略原型验证和组合分析。
- 核心:基于 Pandas/Numpy/NumExpr/Polars/JAX 等进行列式运算。
- 功能:
- 快速生成交易信号。
- 高效计算组合收益、指标。
- 简单的交易成本模拟。
- 支持大规模参数优化和敏感性分析。
- 集成:可以作为策略筛选工具,其结果可输入事件驱动引擎进行精细验证。
- 6.5 订单管理与执行模块 (Order Management & Execution)
- 目标:统一处理回测和实盘中的订单生命周期。
- 功能:
- 订单状态跟踪 (Pending, Submitted, Filled, Cancelled, Rejected)。
- 回测中的撮合逻辑实现。
- 实盘中与 Broker Driver 交互,发送和接收订单回报。
- 风控检查(与风控模块联动)。
- 6.6 投资组合与风险管理 (Portfolio & Risk Management)
- 目标:实时跟踪账户状态,评估和控制风险。
- 功能:
- 持仓管理(多标的、多空)。
- 资金/权益计算。
- PnL 计算 (逐笔、逐日)。
- 常用风险指标计算 (最大回撤、夏普比率、波动率、在险价值 VaR 等)。
- 可配置的风控规则 (如:单笔亏损限制、总亏损限制、持仓集中度限制、黑名单等)。
- 与订单管理模块联动,执行风控动作(如:拒绝下单、强制平仓)。
- 6.7 行情与交易驱动接口 (Broker/Datafeed Driver Interface)
- 目标:标准化接口,方便接入不同数据源和券商。
- 设计:定义统一的接口规范 (如
connect
,subscribe
,send_order
,cancel_order
等)。 - 实现:
- CTP 驱动 (核心): 深度封装,稳定可靠,支持国内期货、期权。
- 股票仿真/实盘驱动: 对接华鑫奇点、QMT、Ptrade 等穿透式认证要求的柜台接口(可能需要社区贡献或用户自行开发)。提供 SimNow 或其他模拟盘接口。
- 数据源驱动: 封装 Tushare, Baostock 等免费/付费数据源。
- 文件驱动: 支持从本地 CSV/HDF5 等文件加载数据进行回测。
- 6.8 分析与可视化模块 (Analysis & Visualization)
- 目标:提供丰富的策略表现分析工具和图表。
- 功能:
- 基于
quantstats
,pyfolio
或自研模块生成标准化的回测报告。 - 绘制资金曲线、收益率分布、回撤图、持仓变化等。
- 与 Jupyter Notebook/Lab 良好集成。
- 支持与 Plotly, Matplotlib, Seaborn 等库结合进行自定义可视化。
- 基于
- 6.9 (可选) 参数优化模块
- 支持网格搜索、随机搜索、贝叶斯优化等方法。
- 支持多进程/分布式计算加速。
- 6.10 (可选) AI/ML 集成模块
- 提供与 Scikit-learn, TensorFlow, PyTorch 集成的便利接口。
- 借鉴 qlib 的思路,提供特征工程、模型训练、模型评估的辅助工具。
- 6.1 数据中心 (Data Center)
- 关键技术选型
- 主要语言: Python 3.8+
- 核心数据结构: Pandas DataFrame/Series, Numpy Array (考虑 Polars 作为未来选项)
- 性能加速: Numba, Cython, NumExpr (或适时引入 C++/Rust 核心模块)
- 异步处理:
asyncio
(用于实盘 I/O) - 并发处理:
multiprocessing
(用于优化等 CPU 密集任务) - 数据存储: HDF5, Parquet, SQLite/DuckDB
- 可视化: Matplotlib, Plotly, Seaborn
- 依赖管理: Poetry 或 Conda
- 代码规范与测试: Black, Flake8, Pytest
- 特色与优势
- 双引擎设计: 兼顾回测精度/实盘稳定性与研发效率。
- 深度本地化: 全面支持国内市场特性(交易日历、合约规则、手续费、保证金、数据源、CTP接口)。
- 高性能: 关键路径代码优化,向量化与事件驱动结合。
- 高扩展性: 模块化设计,易于添加新数据源、券商接口、策略、分析指标。
- 现代化技术栈: 利用
asyncio
,pandas
等现代 Python 库。 - 社区友好: 完善的文档、示例、贡献指南,积极构建开发者社区。
- 未来发展与社区建设
- 短期路线图 (MVP):
- 实现核心事件驱动引擎(回测优先)。
- 完善数据中心,支持常用本地文件和 Tushare/Baostock。
- 实现基础策略 API 和订单管理。
- 实现 CTP 驱动(行情+交易)。
- 基础的回测分析报告。
- 中期路线图:
- 实现向量化引擎。
- 支持更多数据源和券商接口(尤其是股票)。
- 完善风险管理模块。
- 开发参数优化模块。
- 丰富可视化功能。
- 长期路线图:
- AI/ML 集成。
- 分布式回测/优化。
- (可选) 简单的 GUI 监控界面。
- 持续性能优化和社区需求响应。
- 社区建设:
- 建立 Github 项目,完善 README 和文档。
- 提供清晰的安装指南和入门示例。
- 建立交流渠道(如:微信群、QQ群、论坛)。
- 鼓励用户贡献代码、文档、示例。
- 定期发布版本,保持项目活跃度。
- 短期路线图 (MVP):
- 结论
DragonQuant
旨在通过借鉴现有优秀框架的经验,并针对国内市场的特殊需求进行深度定制和优化,提供一个高性能、高易用性、高扩展性的 Python 开源量化框架。其双引擎设计、全面的本地化支持和开放的社区策略,有望成为国内量化开发者和研究人员的有力工具。项目的成功将依赖于持续的技术投入和活跃的社区共建。
下一步建议:
- 细化设计: 对每个模块的核心类、接口、数据流进行更详细的设计。
- 技术验证: 对关键技术点(如 CTP 封装、高性能数据处理、双引擎切换)进行原型验证。
- 搭建基础框架: 建立项目结构,配置开发环境,实现最核心的骨架代码。
- 社区启动: 开始在小范围宣传,吸引早期贡献者。
希望这份设计方案能为您提供一个清晰的蓝图!