01
微软开源:量化投资神器 Qlib
微软开源 AI 量化投资神器 Qlib,这是一个专为 AI 量化投资设计的工具包,由微软亚洲研究院开发。目前在 GitHub 上已经获得了 17.5K 的 Star 。
不仅融合了前沿的机器学习技术,还覆盖了从数据挖掘到策略落地的全流程,堪称金融科技领域的“瑞士军刀”。
① 高效的数据管理与处理:
Qlib 提供了统一的数据接口,能够轻松地加载各种金融数据(如股票、期货、外汇等)。数据可以进行灵活的清洗、转换和特征工程,以便进行进一步的模型训练。
② 支持机器学习和深度学习模型:
Qlib 提供了各种常见的量化模型、机器学习算法和深度学习框架,用户可以基于这些框架开发自己的量化策略。
它还支持诸如 XGBoost、LightGBM 等流行的机器学习模型,以及深度学习模型(如 LSTM、CNN 等)。
③ 回测和策略评估:
具有内置的回测引擎,用户可以在历史数据上验证量化策略的表现,评估其风险、收益等关键指标。
Qlib 允许用户灵活设置回测的参数,并可视化策略的历史表现。
开源地址:https://github.com/microsoft/qlib
02
国内较火的量化交易框架
一个基于 Python 的开源量化交易框架,自 2015 年发布以来,已成为国内用户最多的量化金融开源项目之一。目前在 GitHub 上获得了 28.4K 的 Star 。
覆盖期货、股票、期权、外汇、数字货币等多种金融市场。其设计注重高性能与可扩展性,支持从策略开发、回测到实盘交易的全流程。
开源地址:https://github.com/vnpy/vnpy
① 丰富的交易接口:支持国内外主流交易所(如 CTP、富途、币安等)等40+ 交易接口,提供统一的 Gateway 接口,便于对接不同交易系统。
② 事件驱动架构:通过多线程事件引擎(event
模块)实现异步处理,确保实时交易与数据处理的效率。
③ 内置策略与工具:提供技术指标计算、K线合成、策略回测(CtaBacktesting
模块)及参数优化(遗传算法/穷举法)功能。
④ 数据管理:集成 MongoDB 数据库支持(database
模块),支持历史数据导入与实时数据记录。
03
微软最新开源的的 RD-Agent
微软最新开源的的 RD-Agent 是一个专注于自动化工业研发流程的开源项目,在数据驱动的量化交易场景中表现还不错。
在金融领域,RD-Agent 通过整合“研究(R)”与“开发(D)”的闭环,实现了量化因子与模型的自动迭代进化。
例如,用户可通过命令 rdagent fin_factor
启动自动化因子生成流程:系统基于历史数据提出新因子假设,结合Qlib框架进行回测验证,并通过强化学习筛选高收益因子,持续优化投资策略。
构建了“数据-想法-代码-验证”的完整自动化链路。其底层框架支持实时监控策略表现,当模型收益衰减时,Agent 会自动触发因子/模型的重新生成与测试,形成自我迭代的智能投研体系。
这种将LLM的认知能力与量化系统工具链深度结合的模式,为高频、动态的金融市场提供了可扩展的自动化解决方案。
开源地址:https://github.com/microsoft/RD-Agent
04
另一个开源量化交易框架
Abu 是一个基于 Python 的开源量化交易框架,由开发者团队 bbfamily 维护,旨在为股票、期权、期货、比特币等金融资产提供全面的量化交易解决方案。
项目结合传统量化策略与机器学习技术,强调智能化策略优化和实盘交易适配性,适用于从普通投资者到专业量化研究者的广泛用户群体。
开源地址:https://github.com/bbfamily/abu
① 多市场支持:支持美股、A股、港股、期货、期权、比特币、莱特币等多种投资标的,覆盖主流金融市场。
② 机器学习驱动的策略优化:通过 AI 技术(如物理模型组、多巴胺生物模型组、量化形态模型组)对策略进行智能优化,提升实盘表现。系统内置数百种子策略,通过遗传淘汰机制不断自我学习和分裂,生成近 2 万种衍生策略。
③ 理论与技术融合
理论体系:整合缠论、波浪理论、谐波理论及经典技术指标(如头肩形态、三角整理、均线系统等)。
量化模型:包含上百种细分模型,如金融时间序列损耗模型、多空形态组合评定模型、趋势角度变化率模型等,从多维度分析市场。
④ 策略开发与回测
择时策略:支持自定义买入/卖出信号生成,结合止盈止损、滑点计算、手续费管理等功能。
多资产回测:提供 A 股(处理涨跌停)、港股、加密货币等市场的回测工具,支持并行计算加速。
参数优化:通过网格搜索(Grid Search)寻找最优参数,支持自定义评分机制评估策略表现。
05
点击下方卡片,关注我
这个公众号历史发布过很多有趣的开源项目,如果你懒得翻文章一个个找,你直接关注微信公众号:逛逛 GitHub ,后台对话聊天就行了: