图里数据节点是多对多的关系。一个节点有多个前驱,也有多个后继。甚至还有无向图,不区分前驱和后继,只需要节点之间有邻接关系即可。因此,描述这种数据关系,需要新的数据结构。
图有顶点集和边集组成。顶点代表一个数据节点,边代表数据顶点间的邻接关系。
描述图的数据结构是多种多样的,bilibili里小甲鱼老师也说了,程序编程是没有唯一答案的。能解决问题即可。因为编程的自由度,比数学领域大,不像数学题那样只有唯一一个正确答案。和为数不多的几种解法。程序能解决问题,清晰易懂就是好程序。在前人的基础上改动一些,改进一些,也算是更好的程序。
图可以用邻接矩阵来描述,包含一个存储所有顶点的数组成员,一个存储顶点间邻接关系的二维矩阵,矩阵元素值表示两个下标对应的两个顶点是否有邻接关系,对于带权边,则矩阵元素值表示对应边的权,还有一个表示顶点数的成员,一个表示边数的成员。如此的一个结构体变量就可以表示图的所有数据信息。
图也可以用邻接表来表示。因为对于稀疏图来说,用邻接矩阵存储边,太浪费内存。邻接表的结构体成员包括,由单链表表头组成的一维数组和总顶点数成员和总边数成员。每一个表头也是结构体变量:一个成员存储顶点,另一个成员存储指向邻接表节点的指针。邻接表节点也是结构体变量,其一个成员存储与表头顶点邻接的另一个顶点在表头数组里的下标,一个成员存储对应边的权值,最后一个成员是指向下一个表节点的指针。如此,这样的一个邻接表结构体变量也存储了图的所有信息。
本例题是个练习,包含的函数功能如下:
函数createGraphAdjMatrix,由图的所有零碎已知信息建立邻接矩阵。
函数createGraphAdjList,由图的所有零碎已知信息建立邻接表。
函数matrixToList,由邻接矩阵建立邻接表。
函数listToMatrix,由邻接表建立邻接矩阵;其实就是对结构体的各成员赋值。
函数dispalyGraphAdjMatrix,由邻接矩阵输出图的所有信息,以矩阵表示。
函数displayGrapgAdjList,由邻接表输出图的所有信息,以线性表表示。这两个输出的目的也是为了检测图的结构体变量建立是否准确。
完整代码如下,先是main函数所在文件代码:
#include<iostream>
#include<stdio.h>
using namespace std;
#define MAXVERTEX 15
#define INFINI 65555
struct GraphAdjaMatrix {
char vertexes[MAXVERTEX];
int edges[MAXVERTEX][MAXVERTEX];
int numVertexes;
int numEdges;
};
struct AdjaListNode {
int indexOfVertex;
int weightOfEdge;
AdjaListNode* pt;
};
struct AdjListHead {
char vertex;
AdjaListNode* pt;
};
struct GraphAdjaList {
AdjListHead vertexes[MAXVERTEX];
int numVertexes;
int numEdges;
};
extern void createGraphAdjMatrix(GraphAdjaMatrix &graphAdjMatrix,
int numVertexes,int numEdges,int edges[][6],char vertexes[]);
extern void createGraphAdjList(GraphAdjaList &graphAdjList,
int numVertexes, int numEdges, int edges[][6], char vertexes[]);
extern void matrixToList(GraphAdjaMatrix &graphAdjMatrix,
GraphAdjaList &graphAdjList);
extern void listToMatrix(GraphAdjaList &graphAdjList,
GraphAdjaMatrix &graphAdjMatrix);
extern void dispalyGraphAdjMatrix(GraphAdjaMatrix &graphAdjMatrix);
extern void displayGrapgAdjList(GraphAdjaList &graphAdjList);
int main() {
GraphAdjaMatrix graphAdjMatrix ;
GraphAdjaList graphAdjList;
int numVertexes = 6, numEdges = 10;
int edges[][6] = { {0,5,INFINI,7,INFINI,INFINI},
{INFINI,0,4,INFINI,INFINI,INFINI},
{8,INFINI,0,INFINI,INFINI,9},
{INFINI,INFINI,5,0,INFINI,6},
{INFINI,INFINI,INFINI,5,0,INFINI},
{3,INFINI,INFINI,INFINI,1,0} };
char vertexes[] = {'a','b','c','d','e','f'};
createGraphAdjMatrix(graphAdjMatrix,numVertexes,numEdges,edges,vertexes);
createGraphAdjList(graphAdjList,numVertexes,numEdges,edges,vertexes);
GraphAdjaMatrix graphAdjMatrixNew;
GraphAdjaList graphAdjListNew;
matrixToList(graphAdjMatrix,graphAdjListNew);
listToMatrix(graphAdjList,graphAdjMatrixNew);
dispalyGraphAdjMatrix(graphAdjMatrixNew);
cout << endl;
displayGrapgAdjList(graphAdjListNew);
return 0;
}
接着是各函数所在源文件代码:
#include<iostream>
#include<stdio.h>
using namespace std;
#define MAXVERTEX 15
#define INFINI 65555
struct GraphAdjaMatrix {
char vertexes[MAXVERTEX];
int edges[MAXVERTEX][MAXVERTEX];
int numVertexes;
int numEdges;
};
struct AdjaListNode {
int indexOfVertex;
int weightOfEdge;
AdjaListNode* pt;
};
struct AdjListHead {
char vertex;
AdjaListNode* pt;
};
struct GraphAdjaList {
AdjListHead vertexes[MAXVERTEX];
int numVertexes;
int numEdges;
};
void createGraphAdjMatrix(GraphAdjaMatrix &graphAdjMatrix,
int numVertexes, int numEdges, int edges[][6], char vertexes[]) {
graphAdjMatrix.numVertexes = numVertexes;
graphAdjMatrix.numEdges = numEdges;
for (int i = 0; i < numVertexes; i++)
graphAdjMatrix.vertexes[i] = vertexes[i];
for (int row = 0; row < numVertexes; row++)
for (int column = 0; column < numVertexes; column++)
graphAdjMatrix.edges[row][column] = edges[row][column];
}
void createGraphAdjList(GraphAdjaList &graphAdjList,
int numVertexes, int numEdges, int edges[][6], char vertexes[]){
graphAdjList.numEdges = numEdges;
graphAdjList.numVertexes = numVertexes;
for (int i = 0; i < MAXVERTEX; i++)
graphAdjList.vertexes[i].pt = NULL;
for (int i = 0; i < numVertexes; i++)
graphAdjList.vertexes[i].vertex = vertexes[i];
AdjaListNode* ptTail = NULL,*ptNew;
int i, j;
for ( i = 0; i < numVertexes; i++)
for (j = 0; j < numVertexes; j++)
if (edges[i][j] != 0 && edges[i][j] != INFINI) {
ptNew = new AdjaListNode;
ptNew->indexOfVertex = j;
ptNew->weightOfEdge = edges[i][j];
if (graphAdjList.vertexes[i].pt == NULL) {
ptNew->pt = NULL;
graphAdjList.vertexes[i].pt = ptNew;
ptTail = ptNew;
}
else {
ptNew->pt = ptTail->pt;
ptTail->pt = ptNew;
ptTail = ptNew;
}
}
}
void matrixToList(GraphAdjaMatrix &graphAdjMatrix,
GraphAdjaList &graphAdjList) {
graphAdjList.numEdges = graphAdjMatrix.numEdges;
graphAdjList.numVertexes = graphAdjMatrix.numVertexes;
for (int i = 0; i < MAXVERTEX; i++)
graphAdjList.vertexes[i].pt = NULL;
for (int i = 0; i < graphAdjList.numVertexes; i++)
graphAdjList.vertexes[i].vertex = graphAdjMatrix.vertexes[i];
AdjaListNode* ptTail = NULL, * ptNew;
int i, j;
for (i = 0; i < graphAdjList.numVertexes; i++)
for (j = 0; j < graphAdjList.numVertexes; j++)
if (graphAdjMatrix.edges[i][j] != 0 &&
graphAdjMatrix.edges[i][j] != INFINI) {
ptNew = new AdjaListNode;
ptNew->indexOfVertex = j;
ptNew->weightOfEdge = graphAdjMatrix.edges[i][j];
if (graphAdjList.vertexes[i].pt == NULL) {
ptNew->pt = NULL;
graphAdjList.vertexes[i].pt = ptNew;
ptTail = ptNew;
}
else {
ptNew->pt = ptTail->pt;
ptTail->pt = ptNew;
ptTail = ptNew;
}
}
}
void listToMatrix(GraphAdjaList &graphAdjList,
GraphAdjaMatrix &graphAdjMatrix) {
graphAdjMatrix.numEdges = graphAdjList.numEdges;
graphAdjMatrix.numVertexes = graphAdjList.numVertexes;
for (int i = 0; i < graphAdjMatrix.numVertexes; i++)
graphAdjMatrix.vertexes[i] = graphAdjList.vertexes[i].vertex;
int row, column;
//对邻接矩阵的初始化,主对角线为0,其余统统为无穷大
for(row = 0 ; row < graphAdjMatrix.numVertexes ; row++)
for(column = 0 ; column < graphAdjMatrix.numVertexes ; column++)
if (row == column)
graphAdjMatrix.edges[row][column] = 0 ;
else
graphAdjMatrix.edges[row][column] = INFINI;
AdjaListNode* pt;
for (row = 0; row < graphAdjMatrix.numVertexes; row++) {
pt = graphAdjList.vertexes[row].pt;
while (pt != NULL) {
column = pt->indexOfVertex;
graphAdjMatrix.edges[row][column] = pt->weightOfEdge;
pt = pt->pt;
}
}
}
void dispalyGraphAdjMatrix(GraphAdjaMatrix &graphAdjMatrix) {
cout << "adjacensy matrix :" << endl;
int row,column;
printf("%3c",' ');
for (row = 0; row < graphAdjMatrix.numVertexes; row++)
printf("%3c",graphAdjMatrix.vertexes[row]);
printf("\n");
for (row = 0; row < graphAdjMatrix.numVertexes; row++) {
printf("%-3c", graphAdjMatrix.vertexes[row]);
for (column = 0; column < graphAdjMatrix.numVertexes; column++)
if (graphAdjMatrix.edges[row][column] == INFINI)
printf("%3s", "∞");
else
printf("%3d",graphAdjMatrix.edges[row][column]);
cout << endl;
}
}
void displayGrapgAdjList(GraphAdjaList &graphAdjList) {
cout << "graph adjacency list :" << endl;
AdjaListNode* pt;
for (int i = 0; i < graphAdjList.numVertexes; i++) {
printf("%2c:",graphAdjList.vertexes[i].vertex);
pt = graphAdjList.vertexes[i].pt;
while (pt != NULL) {
printf("%5d(%d)",pt->indexOfVertex,pt->weightOfEdge);
pt = pt->pt;
}
cout << endl;
}
}
测试结果如下:
谢谢阅读