Pytorch DataLoader 加速设置,实测有效

问题:训练耗时并不大,但数据加载耗时,可进行以下配置

主要是两个参数:pin_memory=True 和 non_blocking=True,原理就是利用 CUDA 多流进行异步传输,也就是在GPU计算的时候进行 CPU=>GPU 间的数据传输。

硕士期间主要做的是高性能计算,所以看了下介绍就理解了,突然发现硕士期间学的 GPU 相关知识还是有点点用的,哈哈哈。

加速效果,还是很明显的。

需要注意的是:validate 部分 不需要添加 non_blocking 配置,不然反而会变慢。猜测是因为net.eval() 过程和训练时的区别【瞎猜的,实际上并没发现是为啥】

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值