python如何处理大规模的数据pyarrow

pyarrow是一个用于高效处理大规模数据的Python库,支持在内存和磁盘上的数据存储、操作,以及与numpy、pandas等库的交互。通过创建和操作数组、表格、文件,pyarrow提供高性能的存储格式如Parquet,适用于大规模数据处理、跨语言数据交换和机器学习场景。相比于numpy和pandas,pyarrow在数据类型、存储格式和处理能力上有所不同,尤其适合处理大规模数据和跨平台数据交换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pyarrow 是一个用于高效处理大规模数据的 Python 库,它支持在内存中和磁盘上存储和操作数据,同时提供了一组 API,用于高效地转换和传输数据。

以下是一些示例代码,展示了 pyarrow 库的一些常见用法:

  • 创建和操作数组
import pyarrow as pa

# 创建一个整数数组
data = pa.array([1, 2, 3, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

openwin_top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值