质数
试除法判定质数
bool primes(int x){
if(x<2) return false;
for(int i=2;i<=x/i;i++){
if(x%i==0) return false;
}
return true;
}
埃筛1
int p[N],k,n;
bool f[N];
void primes(int n){ //埃筛,思想:质数的倍数是合数
for(int i=2;i<=n;i++){
if(f[i]==0){ //是质数
p[++k]=i; //质数存储
for(int j=i*i;j<=n;j+=i) f[j]=1;
}
}
}
/*
内层for优化,即质数的倍数是合数,而合数不用重复枚举;
另外,从i*i开始也是优化步骤
*/
埃筛2
int p[N],k,n;
bool f[N];
void primes(int n){ //埃筛,sqrt(n)次遍历
for(int i=2;i<=n/i;i++){
if(f[i]==0){ //是质数
for(int j=i*i;j<=n;j+=i){
if(f[j]==0) f[j]=1;
}
}
}
for(int i=2;i<=n;i++){
if(f[i]==0) p[++k]=i;
}
}
线筛(欧拉筛)
int p[N],k,n;
bool f[N];
void primes(int n){ //线筛,思想:合数被它最小的质数筛掉
for(int i=2;i<=n;i++){
if(f[i]==0) p[++k]=i; //如果是质数,存储
for(int j=1;p[j]<=n/i;j++){ //遍历现有质数表
f[i*p[j]]=1; //i倍的质数组成的合数
if(i%p[j]==0) break; //合数被最小的质数筛掉,即合数i%p[j]应该被最小的p[j]筛掉
}
}
}
算术基本定理(唯一分解定理)
int n,p[N],cnt[N],k;
int decompos(int n){
int m=0;
for(int i=2;i<=n/i;i++){
if(n%i==0){
p[++m]=i; //存储质数
while(n%i==0){
n/=i;
cnt[m]++; //存储对应的质数数量
}
}
}
if(n>1){ //剩余的质数以及数量
p[++m]=n;
cnt[m]=1;
}
return m;
}
二分
定义
过程
实现步骤
模板代码
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n,tan;
cin >> n;
int a[n];
for(int i = 0;i < n;i ++)
cin >> a[i];
int left=0,right=n-1,mid;
cin >> tan;
while(left<=right)
{
mid = (left+right)/2;
if(a[mid] > tan)
{
right = mid - 1;
}
else
{
left = mid + 1;
}
}
printf("%d",left);
return 0;
}
适用范围
需要有边界,有限