裴蜀定理学习笔记

一、裴蜀定理

a , b a, b a,b 是整数,且 g c d ( a , b ) = d gcd(a, b) = d gcd(a,b)=d ,那么对于任意整数 x , y x, y x,y a x + b y ax + by ax+by d d d 的倍数,特别地,一定存在整数 x , y x,y x,y 使 a x + b y = d ax + by = d ax+by=d 成立。
前半句话很好理解,也极易证明,因此,定理的主要内容集中在后半句话,即:设 g c d ( a , b ) = d gcd(a, b) = d gcd(a,b)=d,方程 a x + b y = d ax+by=d ax+by=d 必有整数解。

二、证明

考虑求最大公约数的过程,根据 g c d ( a , b ) = g c d ( b , a % b ) gcd(a, b) = gcd(b, a \% b) gcd(a,b)=gcd(b,a%b) 转换位带余除法得到:
{ a = q 1 b + r 1 b = q 2 r 1 + r 2 r 1 = q 3 r 2 + r 3 . . . r k − 3 = q k − 1 r k − 2 + r k − 1 r k − 2 = q k r k − 1 + r k r k − 1 = q k + 1 r k + r k + 1 \left\{ \begin{aligned} a &= q_1b + r_1 \\ b &= q_2r_1+r_2 \\ r_1 &= q_3r_2 + r_3 \\ ... \\ r_{k-3} &= q_{k-1}r_{k-2}+r_{k-1}\\ r_{k-2} &= q_{k}r_{k-1}+r_k \\ r_{k-1} &= q_{k+1}r_k + r_{k+1}\\ \end{aligned} \right. abr1...rk3rk2rk1=q1b+r1=q2r1+r2=q3r2+r3=qk1rk2+rk1=qkrk1+rk=qk+1rk+rk+1

不妨认为在最后一个等式时恰好除尽,即:
r k = g c d ( a , b ) = d , r k + 1 = 0 r_k = gcd(a,b) = d, r_{k+1} = 0 rk=gcd(a,b)=d,rk+1=0

r k − 2 = q k r k − 1 + r k r_{k-2} = q_{k}r_{k-1}+r_k rk2=qkrk1+rk 得:
d = q k r k − 1 − r k − 2 d = q_kr_{k-1} - r_{k-2} d=qkrk1rk2

r k − 3 = q k − 1 r k − 2 + r k − 1 r_{k-3} = q_{k-1}r_{k-2}+r_{k-1} rk3=qk1rk2+rk1 带入消去 r k − 1 r_{k-1} rk1 得:
d = − q k r k − 3 + ( 1 + q k q k − 1 ) r k − 2 d=-q_kr_{k-3}+(1+q_kq_{k-1})r_{k-2} d=qkrk3+(1+qkqk1)rk2

同理,将上面等式倒序带入,依次消去 r k − 2 , r k − 3 . . . r 1 r_{k-2},r_{k-3}...r_1 rk2,rk3...r1 可得:
d = m b + n a d = mb + na d=mb+na

其中 m , n m,n m,n 均为由 q k + 1 , q k , q k − 1 . . . q 1 q_{k+1},q_{k},q_{k-1}...q_1 qk+1,qk,qk1...q1 表示的式子,因此都为整数。

三、裴蜀定理的推论及证明

  1. a x + b y = 1 ax+by=1 ax+by=1 有整数解当且仅当 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1
    证明:
    → : \rightarrow: : 即证 a x + b y = 1 ax+by=1 ax+by=1有整数解则 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1
    采用反证法,假设结论不成立,即 g c d ( a , b ) = d ( d ≠ 1 ) gcd(a,b)=d(d\neq1) gcd(a,b)=d(d=1)
    d ∣ a , d ∣ b d\mid a, d\mid b da,db,进而 d ∣ a x , d ∣ b y , d ∣ ( a x + b y ) d\mid ax, d\mid by, d\mid(ax+by) dax,dby,d(ax+by),因此 a x + b y = d k ( k ≠ 0 , d ≠ 1 ) ≠ 1 ax+by=dk(k\neq0,d\neq1)\neq1 ax+by=dk(k=0,d=1)=1 与条件矛盾,故假设不成立, g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,得证。
    ← : \leftarrow: : 即证 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1 a x + b y = 1 ax+by=1 ax+by=1
    为裴蜀定理 d = 1 d=1 d=1 的特殊情况。
  2. 对于方程 a x + b y = z ax+by=z ax+by=z,只有满足 g c d ( a , b ) ∣ z gcd(a,b)\mid z gcd(a,b)z,方程才有整数解。
    证明:
    首先证明满足条件时方程有整数解。
    a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b) 的解为 x 1 , y 1 x_1, y_1 x1,y1,则可以构造方程 a x + b y = z ax+by=z ax+by=z 的解, x 1 ∗ z g c d ( a , b ) , y 1 ∗ z g c d ( a , b ) x_1 * \frac{z}{gcd(a,b)},y_1*\frac{z}{gcd(a,b)} x1gcd(a,b)z,y1gcd(a,b)z,代入验证等式成立。
    再证明不满足条件时方程无整数解。
    同上一个推论,采用反证法易证。

四、多个整数的裴蜀定理

对于方程 a 1 x 1 + a 2 x 2 + a 3 x 3 + . . . + a n x n = z a_1x_1+a_2x_2+a_3x_3+...+a_nx_n=z a1x1+a2x2+a3x3+...+anxn=z,满足 g c d ( a , b ) ∣ z gcd(a,b)\mid z gcd(a,b)z 时,方程有整数解。
方程 a 1 x 1 + a 2 x 2 + a 3 x 3 + . . . + a n x n = z a_1x_1+a_2x_2+a_3x_3+...+a_nx_n=z a1x1+a2x2+a3x3+...+anxn=z 有整数解当且仅当 g c d ( a 1 , a 2 , . . . , a n ) = 1 gcd(a_1, a_2, ...,a_n) = 1 gcd(a1,a2,...,an)=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值