class_weight有什么作用?样本失衡如何做?

转载自:https://blog.csdn.net/Captain_DUDU/article/details/105081643

class_weight:用于标示分类模型中各种类型的权重,可以是一个字典或者’balanced’字符串,默认为不输入,也就是不考虑权重,即为None。如果选择输入的话,可以选择balanced让类库自己计算类型权重,或者自己输入各个类型的权重。举个例子,比如对于0,1的二元模型,我们可以定义class_weight={0:0.9,1:0.1},这样类型0的权重为90%,而类型1的权重为10%。如果class_weight选择balanced,那么类库会根据训练样本量来计算权重。某种类型样本量越多,则权重越低,样本量越少,则权重越高。当class_weight为balanced时,类权重计算方法如下:n_samples / (n_classes * np.bincount(y))。n_samples为样本数,n_classes为类别数量,np.bincount(y)会输出每个类的样本数,例如y=[1,0,0,1,1],则np.bincount(y)=[2,3]。

那么class_weight有什么作用呢?
在分类模型中,我们经常会遇到两类问题:
第一种是误分类的代价很高。比如对合法用户和非法用户进行分类,将非法用户分类为合法用户的代价很高,我们宁愿将合法用户分类为非法用户,这时可以人工再甄别,但是却不愿将非法用户分类为合法用户。这时,我们可以适当提高非法用户的权重。
第二种是样本是高度失衡的,比如我们有合法用户和非法用户的二元样本数据10000条,里面合法用户有9995条,非法用户只有5条,如果我们不考虑权重,则我们可以将所有的测试集都预测为合法用户,这样预测准确率理论上有99.95%,但是却没有任何意义。这时,我们可以选择balanced,让类库自动提高非法用户样本的权重。提高了某种分类的权重,相比不考虑权重,会有更多的样本分类划分到高权重的类别,从而可以解决上面两类问题。

好的,在机器学习任务中,特别是在处理不平衡数据集的情况下,调整`class_weight`可以显著影响模型性能。下面我将以随机森林 (RF) 和 XGBoost 模型为例解释如何添加 `class_weight` 并评估 AUC、准确率等指标。 ### 随机森林(RF) 对于 Scikit-Learn 的 RandomForestClassifier ,你可以通过设置 `class_weight='balanced'` 参数来自动调节类别权重: ```python from sklearn.ensemble import RandomForestClassifier # 初始化并训练带平衡权重的随机森林分类器 clf_rf = RandomForestClassifier(class_weight='balanced') clf_rf.fit(X_train, y_train) ``` 这里 `'balanced'` 表示根据y值的分布情况自适应地为每个类别分配权值,以补偿样本量差异带来的偏差问题。 ### XGBoost XGBoost 支持直接传入一个字典类型的参数用于指定各类别的权重。我们也可以利用类似的方式处理类别不平衡的问题: ```python import xgboost as xgb dtrain = xgb.DMatrix(X_train, label=y_train) params = { 'objective': 'binary:logistic', # 假设正负样本比例失衡严重,则增大positive sample weight 'scale_pos_weight': sum(y_train == 0)/sum(y_train==1), } bst = xgb.train(params=params,dtrain=dtrain,num_boost_round=50) # 转换测试集到DMatrix形式以便预测 dtest=xgb.DMatrix(X_test,label=y_test) preds=bst.predict(dtest) ``` 在上面的例子中,`scale_pos_weight` 就是用来解决二元分类中的类别不均衡问题的关键参数之一;当正类远少于负类时适当增加此数值有助于提升对少数类的识别能力。 接下来就可以计算如AUC这样的评价标准了: ```python from sklearn.metrics import roc_auc_score, accuracy_score print("Random Forest:") y_pred_proba = clf_rf.predict_proba(X_test)[::,1] fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba) auc = metrics.auc(fpr,tpr) acc = accuracy_score(y_test, clf_rf.predict(X_test)) print('AUC:', auc,' Accuracy:', acc) print("\nXGBoost:") fpr_xgb, tpr_xgb,_ =metrics.roc_curve(y_test,preds) auc_xgb=metrics.auc(fpr_xgb,tpr_xgb) acc_xgb=accuracy_score(y_test,[round(value) for value in preds]) print('AUC:', auc_xgb,' Accuracy:', acc_xgb) ``` 这样可以帮助您更好地理解两个算法在这种特定配置下的表现,并且能够更直观地比较它们之间的优劣之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值