20220724 三角函数系的正交性


三角函数系定义

三角函数系定义为: { 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , ⋯   , sin ⁡ n x , cos ⁡ n x , ⋯   } \{1,\sin x, \cos x, \sin 2x, \cos 2x,\cdots, \sin nx, \cos nx, \cdots\} {1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,}


正交性定义

正交性是指任意两个不同函数的乘积在区间 [ − π , π ] [-\pi,\pi] [π,π] 内积分为0,即 ∫ − π π sin ⁡ n x cos ⁡ n x  d x = 0 \int_{-\pi}^{\pi} \sin nx \cos nx \text{ d} x=0 ππsinnxcosnx dx=0 ∫ − π π cos ⁡ n x cos ⁡ m x  d x = 0 , m ≠ n \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x=0, m\neq n ππcosnxcosmx dx=0,m=n ∫ − π π sin ⁡ m x  d x = 0 \int_{-\pi}^{\pi} \sin mx \text{ d} x=0 ππsinmx dx=0


证明

对于第一个和第三个等式,由于 sin ⁡ n x cos ⁡ n x \sin nx \cos nx sinnxcosnx sin ⁡ m x \sin mx sinmx 是奇函数,所以成立。

对于第二个等式,证明过程如下:
∫ − π π cos ⁡ n x cos ⁡ m x  d x = 1 m ∫ − π π cos ⁡ n x  d sin ⁡ m x = 1 m cos ⁡ n x sin ⁡ m x ∣ − π π − 1 m ∫ − π π sin ⁡ m x  d cos ⁡ n x = n m ∫ − π π sin ⁡ m x sin ⁡ n x  d x \begin{align*}\int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x&=\frac{1}{m}\int_{-\pi}^{\pi} \cos nx \text{ d} \sin mx \\ &=\frac{1}{m}\cos nx \sin mx |_{-\pi}^\pi -\frac{1}{m}\int_{-\pi}^{\pi} \sin mx \text{ d} \cos nx \\ &=\frac{n}{m} \int_{-\pi}^{\pi} \sin mx \sin nx \text{ d}x \end{align*} ππcosnxcosmx dx=m1ππcosnx dsinmx=m1cosnxsinmxππm1ππsinmx dcosnx=mnππsinmxsinnx dx
进一步可知,
∫ − π π cos ⁡ n x cos ⁡ m x  d x − ∫ − π π sin ⁡ m x sin ⁡ n x  d x = ( 1 − m n ) ∫ − π π cos ⁡ n x cos ⁡ m x  d x \begin{align*}\int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x - \int_{-\pi}^{\pi} \sin mx \sin nx \text{ d}x = (1-\frac{m}{n}) \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x \end{align*} ππcosnxcosmx dxππsinmxsinnx dx=(1nm)ππcosnxcosmx dx
另外 ∫ − π π cos ⁡ n x cos ⁡ m x  d x − ∫ − π π sin ⁡ m x sin ⁡ n x  d x = ∫ − π π cos ⁡ ( ( m + n ) x )  d x = 0 \begin{align*}\int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x - \int_{-\pi}^{\pi} \sin mx \sin nx \text{ d}x = \int_{-\pi}^{\pi} \cos ((m+n)x) \text{ d}x \end{align*} = 0 ππcosnxcosmx dxππsinmxsinnx dx=ππcos((m+n)x) dx=0
则可知,若 m ≠ n m\neq n m=n,则有 ∫ − π π cos ⁡ n x cos ⁡ m x  d x = 0 \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x=0 ππcosnxcosmx dx=0
另,若 m = n m=n m=n,显然有 ∫ − π π cos ⁡ n x cos ⁡ m x  d x > 0 \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x >0 ππcosnxcosmx dx>0
证毕。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值