K-NN(k近邻算法)

初识K-NN(k-Nearest Neighbor):K-NN(k-近邻算法)是一种常用的监督学习方法,其工作机制非常的简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k 个“邻居”的信息来进行预测,通常在分类任务中可以使用投票法,即选择这k个样本中出现最多的类别标记作为预测结果。

一 . K-近邻算法(KNN)概述 

    最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN。

     KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

     下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。


 由此也说明了KNN算法的结果很大程度取决于K的选择。

     在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:


 

  同时,KNN通过依据k个对象中占优的类别进行决策,而不是单一的对象类别决策。这两点就是KNN算法的优势。

   接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:

step.1---初始化距离为最大值

step.2---计算未知样本和每个训练样本的距离dist,然后对所有的距离进行排序,选择前k个距离。

step.3---得到目前K个最临近样本中的最大距离maxdist

step.4---如果dist小于maxdist,则将该训练样本作为K-最近邻样本,然后在邻近样本空间中选择最多的类别。

step.5---重复步骤2、3、4,直到未知样本和所有训练样本的距离都算完

step.6---统计K-最近邻样本中每个类标号出现的次数

step.7---选择出现频率最大的类标号作为未知样本的类标号

二 .python实现

首先呢,需要说明的是我用的是python3.4.3,里面有一些用法与2.7还是有些出入。

建立一个KNN.py文件对算法的可行性进行验证,如下:

#coding:utf-8 from numpy import * import operator ##给出训练数据以及对应的类别 def createDataSet(): group = array([[1.0,2.0],[1.2,0.1],[0.1,1.4],[0.3,3.5]]) labels = ['A','A','B','B'] return group,labels ###通过KNN进行分类 def classify(input,dataSe t,label,k): dataSize = dataSet.shape[0] ####计算欧式距离 diff = tile(input,(dataSize,1)) - dataSet sqdiff = diff ** 2 squareDist = sum(sqdiff,axis = 1)###行向量分别相加,从而得到新的一个行向量 dist = squareDist ** 0.5 ##对距离进行排序 sortedDistIndex = argsort(dist)##argsort()根据元素的值从大到小对元素进行排序,返回下标 classCount={} for i in range(k): voteLabel = label[sortedDistIndex[i]] ###对选取的K个样本所属的类别个数进行统计 classCount[voteLabel] = classCount.get(voteLabel,0) + 1 ###选取出现的类别次数最多的类别 maxCount = 0 for key,value in classCount.items(): if value > maxCount: maxCount = value classes = key return classes

接下来,在命令行窗口输入如下代码:

#-*-coding:utf-8 -*- import sys sys.path.append("...文件路径...") import KNN from numpy import * dataSet,labels = KNN.createDataSet() input = array([1.1,0.3]) K = 3 output = KNN.classify(input,dataSet,labels,K) print("测试数据为:",input,"分类结果为:",output)

回车之后的结果为:

测试数据为: [ 1.1  0.3] 分类为: A

答案符合我们的预期,要证明算法的准确性,势必还需要通过处理复杂问题进行验证,之后另行说明。

 

这是第一次用python编的一个小程序,势必会遇到各种问题,在此次编程调试过程中遇到了如下问题:

 1 导入.py文件路径有问题,因此需要在最开始加如下代码:

  •   import sys

  sys.path.append("文件路径"),这样就不会存在路径有误的问题了;

   2 在python提示代码存在问题时,一定要及时改正,改正之后保存之后再执行命令行,这一点跟MATLAB是不一样的,所以在python中最好是敲代码的同时在命令行中一段一段的验证;

 3 在调用文件时函数名一定要写正确,否则会出现:'module' object has no attribute 'creatDataSet';

 4 'int' object has no attribute 'kclassify',这个问题出现的原因是之前我讲文件保存名为k.py,在执行

output = K.classify(input,dataSet,labels,K)这一句就会出错。根据函数式编程的思想,每个函数都可以看为是一个变量而将K赋值后,调用k.py时就会出现问题。
三 MATLAB实现
之前一直在用MATLAB做聚类算法的一些优化,其次就是数模的一些常用算法,对于别的算法,还真是没有上手编过,基础还在,思想还在,当然要动手编一下,也是不希望在学python的同时对MATLAB逐渐陌生吧,走走停停,停很重要。
首先,建立KNN.m文件,如下

%% KNN clear all clc %% data trainData = [1.0,2.0;1.2,0.1;0.1,1.4;0.3,3.5]; trainClass = [1,1,2,2]; testData = [0.5,2.3]; k = 3; %% distance row = size(trainData,1); col = size(trainData,2); test = repmat(testData,row,1); dis = zeros(1,row); for i = 1:row diff = 0; for j = 1:col diff = diff + (test(i,j) - trainData(i,j)).^2; end dis(1,i) = diff.^0.5; end %% sort jointDis = [dis;trainClass]; sortDis= sortrows(jointDis'); sortDisClass = sortDis'; %% find class = sort(2:1:k); member = unique(class); num = size(member); max = 0; for i = 1:num count = find(class == member(i)); if count > max max = count; label = member(i); end end disp('最终的分类结果为:'); fprintf('%d\n',label)

运行之后的结果是,最终的分类结果为:2。和预期结果一样。

总而言之,用MATLAB的时间相对长点,自然也就得心应手点,不过还是希望早点能将python运用自如吧!

  • 5
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
k-近邻算法k-NN算法)是一种常用于分类和回归问题的机器学习算法。它的方法基于实例,通过检查与新示例最相似的训练示例的标签来进行预测。以下是关于k-NN算法的一些基本概念和原理。 k-NN算法的原理是基于实例的学习。它假设类似的示例具有类似的标签。当给定一个未标记的示例时,算法会查找训练集中与该示例最相似的k个示例。然后,根据这k个示例中最常见的标签来预测该示例的标签。 在实际应用中,k-NN算法的性能受到参数k的选择和距离度量方法的选择的影响。参数k决定了要考虑多少个最近邻示例。通常,较小的k值会导致分类结果更加敏感,而较大的k值会使结果更平滑。距离度量方法通常使用欧几里德距离或曼哈顿距离等。 k-NN算法的优点之一是简单且易于理解。它不需要建立模型或进行迭代优化,而是根据训练集中的实例进行直接预测。此外,k-NN算法在处理多类问题时也很有效。 然而,k-NN算法也有一些限制。首先,它的计算开销较大,尤其当训练集很大时。其次,在高维空间中,由于所谓的“维度灾难”问题,k-NN算法可能会产生较差的性能。此外,由于没有明确的模型,k-NN算法不能提供对数据背后的规律的解释。 总结来说,k-NN算法是一种基于实例的学习算法,适用于分类和回归问题。它简单且易于理解,对多类问题有效。然而,需要注意参数k的选择和距离度量方法的选择,并且计算开销较大。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值