AI学习指南机器学习篇-层次聚类合并策略

AI学习指南机器学习篇-层次聚类合并策略

在机器学习领域,层次聚类(Hierarchical Clustering)是一种常用的聚类方法,它通过不断合并相似的聚类来构建聚类层次结构。在层次聚类中,聚类合并策略是非常关键的一环,不同的合并策略会对最终的聚类结果产生影响。本文将介绍在层次聚类中常用的聚类合并策略,如单连接、完全连接、平均连接等,并讨论它们的特点和适用场景。

1. 聚类合并策略介绍

在层次聚类中,聚类合并策略是指在每一次聚类合并时,如何度量两个簇之间的相似度,并决定是否将它们合并为一个簇。常用的聚类合并策略包括单连接(Single Linkage)、完全连接(Complete Linkage)、平均连接(Average Linkage)、Ward"s方法等。下面将对这些策略进行详细介绍。

1.1 单连接(Single Linkage)

单连接是一种简单而直观的合并策略。在单连接中,两个簇之间的相似度被定义为它们中距离最近的两个样本的距离。当进行聚类合并时,将计算所有可能的簇对之间的距离,并选择距离最近的两个簇进行合并。

1.2 完全连接(Complete Linkage

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值