AI学习指南机器学习篇-层次聚类合并策略
在机器学习领域,层次聚类(Hierarchical Clustering)是一种常用的聚类方法,它通过不断合并相似的聚类来构建聚类层次结构。在层次聚类中,聚类合并策略是非常关键的一环,不同的合并策略会对最终的聚类结果产生影响。本文将介绍在层次聚类中常用的聚类合并策略,如单连接、完全连接、平均连接等,并讨论它们的特点和适用场景。
1. 聚类合并策略介绍
在层次聚类中,聚类合并策略是指在每一次聚类合并时,如何度量两个簇之间的相似度,并决定是否将它们合并为一个簇。常用的聚类合并策略包括单连接(Single Linkage)、完全连接(Complete Linkage)、平均连接(Average Linkage)、Ward"s方法等。下面将对这些策略进行详细介绍。
1.1 单连接(Single Linkage)
单连接是一种简单而直观的合并策略。在单连接中,两个簇之间的相似度被定义为它们中距离最近的两个样本的距离。当进行聚类合并时,将计算所有可能的簇对之间的距离,并选择距离最近的两个簇进行合并。