大更新!gpt加入记忆功能,可以记忆自己的提问啦!

OpenAI的ChatGPT新增了记忆存储功能,允许用户控制其记住对话内容,这对于长对话和个性化服务如写作、学习和编程有显著帮助。同时,用户可以自主管理数据安全,选择开启或关闭记忆功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2月14日凌晨,OpenAI在官网宣布,正在测试ChatGPT记住用户提问内容的能力,同时可以自由控制其内存。

该功能使用户不必频繁地提问相同的内容,ChatGPT都将记住那些内容并对长对话、个性化聊天等,例如,写长文小说;长期健康追踪;个性化编程习惯等,起到巨大帮助。

自定义GPTs也支持该功能。目前,部分免费和Plus用户可以使用该功能,未来,OpenAI将进行更大的测试范围

图片

,时长00:19

ChatGPT记忆功能介绍

早在2023年4月初,「AIGC开放社区」曾介绍过一篇斯坦福大学写过的《Generative Agents: Interactive Simulacra of Human Behavior》的论文。

当时这篇论文在国内外都非常火,主要通过沙盒开放世界小游戏,为25个由ChatGPT(GPT-3.5-turbo版本)构建的AI代理,添加记忆、规划、沟通和反思的能力,让其像人类一样自然活动、社交、成长。

图片

经过2天的模拟游戏测试,研究人员发现了惊人的结果:1)AI自己建立了记忆体系并定期进行深层次反思,从而获得对新鲜事物的见解;

2)AI之间建立了友谊并记住了彼此;3)AI之间学会了相互协调;4)AI之间学会了共享信息;

5)AI具备了定制和修改计划的能力。随后,AI代理功能也火爆出圈,成为一个新的赛道。

今天,ChatGPT新增的功能,就是斯坦福论文中所说的记忆存。虽然整整晚了将近1年,但该功能对ChatGPT未来的技术迭代至关重要,奠定了更细分的数据基础。

ChatGPT只有先记住数据,才能衍生出更多的功能和玩法,从这一刻开始才是真正有“生命”的AI助手,就像钢铁侠的贾维斯。

图片

当你启用记忆存储后,与ChatGPT聊天越多记住的就越多,随着时间功能也就越来越强大,以下是典型案例展示。

1)你正在编写一本小说,并且在写作过程中不断向ChatGPT咨询有关书籍结构、角色开发和情节构思的意见。

随着时间的推移,ChatGPT能够记住你的书籍主题、已经创建的角色、甚至是之前讨论过的情节点,可在未来的交流中为你提供更精准、有针对性的建议和反馈。

2)你正在学习一门新语言,ChatGPT可以根据你之前的学习进度、面临的挑战和偏好的学习资源来提供定制化的学习计划。

这意味着ChatGPT能够记住你在语言学习中的强项和弱点,并据此调整提供的练习和材料,帮助你更有效地学习。

3)当你使用ChatGPT编程时,通过分析过往的代码和编程风格,ChatGPT可以提供个性化的编程实践建议。

例如,你倾向于编写冗长的函数,ChatGPT可以根据这个习惯反馈高质量的代码。

如何控制ChatGPT记忆功能

新的记忆功能很强,但带来了更多的数据安全隐患。所以,OpenAI可以让用户自由掌控该功能,开、关完全由你做主。

1)关闭记忆内存:用户可以通过设置>个性化>内存,随时关闭该功能。

2)删除内存记忆:如果你希望ChatGPT删除某些记忆内容,通过设置>个性化>管理内存,来删除特定的内容。

需要注意的是,删除聊天记录没用,需要删除记忆存储才能彻底删除内容。

,时长00:35

3)临时无记忆对话聊天:如果你不想使用记忆存储功能与ChatGPT进行对话,可使用临时聊天功能。

临时聊天不会出现在历史记录中,不会使用内存,也不会用于训练OpenAI的模型。

,时长00:21

OpenAI表示,新推出的自定义GPTs也支持记忆存储功能。但用户不会与开发者共享存储内容,并且想与其他GPT进行交互,需要打开内存才能使用。

### GPT记忆机制解析 GPT 使用了一种基于Transformer架构的记忆机制,该架构依赖于注意力机制来处理输入序列中的不同部分[^3]。具体来说,在多层Transformer结构中,每一层都包含了自注意力机制(self-attention),这使得模型能够关注到输入序列的不同位置,并赋予它们不同的权重。 为了实现长期依赖关系的学习,GPT采用了因果掩码(causal masking)技术,确保在预测当前词时只考虑之前的词语而不是未来的词语。这种设计模仿了自然语言处理过程中人类脑的工作方式,即我们通常是在理解前面的内容后再去推测后面可能出现的信息。 此外,值得注意的是,尽管GPT具有强的模式识别能力并能生成看似连贯的文本片段,但它并不具备传统意义上的“记忆”。也就是说,它不会像生物体那样真正记住任何东西;相反,它是通过对量训练数据的学习而获得了某种形式的知识表示[^4]。当用户与GPT交互时,后者实际上是在根据给定提示以及内部参数快速构建最有可能回应的结果,而非检索已有的记忆条目。 ```python import torch.nn as nn class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.causal_mask = ... # 定义因果掩码 def forward(self, x): attn_weights = ... masked_attn_weights = attn_weights.masked_fill(self.causal_mask == 0, float('-inf')) output = ... return output ``` 上述代码展示了如何在一个简单的PyTorch模块中实现带有因果掩码的自注意力机制。这里的关键在于`masked.fill()`函数的应用,它可以有效地阻止未来信息泄露到当前位置的计算当中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵闪闪168

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值