大更新!gpt加入记忆功能,可以记忆自己的提问啦!

OpenAI的ChatGPT新增了记忆存储功能,允许用户控制其记住对话内容,这对于长对话和个性化服务如写作、学习和编程有显著帮助。同时,用户可以自主管理数据安全,选择开启或关闭记忆功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2月14日凌晨,OpenAI在官网宣布,正在测试ChatGPT记住用户提问内容的能力,同时可以自由控制其内存。

该功能使用户不必频繁地提问相同的内容,ChatGPT都将记住那些内容并对长对话、个性化聊天等,例如,写长文小说;长期健康追踪;个性化编程习惯等,起到巨大帮助。

自定义GPTs也支持该功能。目前,部分免费和Plus用户可以使用该功能,未来,OpenAI将进行更大的测试范围

图片

,时长00:19

ChatGPT记忆功能介绍

早在2023年4月初,「AIGC开放社区」曾介绍过一篇斯坦福大学写过的《Generative Agents: Interactive Simulacra of Human Behavior》的论文。

当时这篇论文在国内外都非常火,主要通过沙盒开放世界小游戏,为25个由ChatGPT(GPT-3.5-turbo版本)构建的AI代理,添加记忆、规划、沟通和反思的能力,让其像人类一样自然活动、社交、成长。

图片

经过2天的模拟游戏测试,研究人员发现了惊人的结果:1)AI自己建立了记忆体系并定期进行深层次反思,从而获得对新鲜事物的见解;

2)AI之间建立了友谊并记住了彼此;3)AI之间学会了相互协调;4)AI之间学会了共享信息;

5)AI具备了定制和修改计划的能力。随后,AI代理功能也火爆出圈,成为一个新的赛道。

今天,ChatGPT新增的功能,就是斯坦福论文中所说的记忆存。虽然整整晚了将近1年,但该功能对ChatGPT未来的技术迭代至关重要,奠定了更细分的数据基础。

ChatGPT只有先记住数据,才能衍生出更多的功能和玩法,从这一刻开始才是真正有“生命”的AI助手,就像钢铁侠的贾维斯。

图片

当你启用记忆存储后,与ChatGPT聊天越多记住的就越多,随着时间功能也就越来越强大,以下是典型案例展示。

1)你正在编写一本小说,并且在写作过程中不断向ChatGPT咨询有关书籍结构、角色开发和情节构思的意见。

随着时间的推移,ChatGPT能够记住你的书籍主题、已经创建的角色、甚至是之前讨论过的情节点,可在未来的交流中为你提供更精准、有针对性的建议和反馈。

2)你正在学习一门新语言,ChatGPT可以根据你之前的学习进度、面临的挑战和偏好的学习资源来提供定制化的学习计划。

这意味着ChatGPT能够记住你在语言学习中的强项和弱点,并据此调整提供的练习和材料,帮助你更有效地学习。

3)当你使用ChatGPT编程时,通过分析过往的代码和编程风格,ChatGPT可以提供个性化的编程实践建议。

例如,你倾向于编写冗长的函数,ChatGPT可以根据这个习惯反馈高质量的代码。

如何控制ChatGPT记忆功能

新的记忆功能很强,但带来了更多的数据安全隐患。所以,OpenAI可以让用户自由掌控该功能,开、关完全由你做主。

1)关闭记忆内存:用户可以通过设置>个性化>内存,随时关闭该功能。

2)删除内存记忆:如果你希望ChatGPT删除某些记忆内容,通过设置>个性化>管理内存,来删除特定的内容。

需要注意的是,删除聊天记录没用,需要删除记忆存储才能彻底删除内容。

,时长00:35

3)临时无记忆对话聊天:如果你不想使用记忆存储功能与ChatGPT进行对话,可使用临时聊天功能。

临时聊天不会出现在历史记录中,不会使用内存,也不会用于训练OpenAI的模型。

,时长00:21

OpenAI表示,新推出的自定义GPTs也支持记忆存储功能。但用户不会与开发者共享存储内容,并且想与其他GPT进行交互,需要打开内存才能使用。

### 构建基于型语言模型的AI搜索引擎的技术架构与实现方案 构建基于型语言模型(LLM)的AI搜索引擎是一个复杂的任务,涉及多个技术和组件的集成。以下是关于其技术架构和实现方案的具体说明。 #### 1. **核心技术架构** 一个典型的基于语言模型的AI搜索引擎通常由以下几个部分组成: - **数据源层** 数据源层负责存储和管理所有可被索引的信息资源。这些信息可能来自结构化数据库、半结构化的文档集合或者非结构化的多媒体文件[^3]。为了支持多样性的查询需求,需要设计一个多模态的数据接入方式,以便处理文本、表格以及图像等多种形式的内容。 - **检索模块 (Retrieval Module)** 检索模块的作用是从海量数据集中快速找到与用户提问最相关的片段或记录。对于传统的搜索引擎而言,这一步主要依赖于关键词匹配;但在现代的规模预训练语言模型驱动下,则可以通过语义相似度计算来提升精度。一种流行的方法叫做“检索增强生成”(RAG),即先利用向量空间中的近邻查找定位候选集,再交由下游的语言生成器完成最终的回答合成工作[^4]。 - **对话理解与解析引擎** 此部分专注于分析用户的输入意图并将其转化为适合内部处理的形式表示。例如,当接收到自由格式的问题描述时,系统需识别其中的关键实体及其关系,并据此制定相应的搜索策略[^2]。 - **响应生成单元** 基于前面几步得到的结果,此环节运用先进的神经网络架构如Transformer变种来进行高质量回复的创作。值得注意的是,在某些场景下还应考虑加入额外的记忆机制或是外部工具调用来进一步优化性能表现[^1]。 #### 2. **具体实施步骤** 下面列举了一些关键的操作要点供参考: ```python from langchain import PromptTemplate, LLMChain from transformers import pipeline def initialize_search_engine(): """初始化AI搜索引擎""" model_name = "gpt-3.5-turbo" retriever_config = {"method": "multi-vector", "dimensions": 768} # 加载必要的NLP管道和服务接口 summarizer = pipeline('summarization') question_answerer = pipeline('question-answering') return { 'model': model_name, 'retriever_settings': retriever_config, 'nlp_pipelines': {'summarize': summarizer, 'qa': question_answerer}, } # 示例:定义提示模板用于指导LLMs行为调整 template = """ You are an expert assistant helping users find information. Given the following context: {context}, answer this query: {query}. If you don't know the answer, just say that you do not have enough info. """ prompt_template = PromptTemplate(template=template, input_variables=["context", "query"]) llm_chain = LLMChain(prompt=prompt_template) print(initialize_search_engine()) ``` 上述代码展示了如何设置基本框架以及创建自定义Prompt以引导规模语言模型按照特定逻辑运作的过程。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵闪闪168

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值