tensoflow2

7 篇文章 1 订阅
3 篇文章 0 订阅

版本变化

高效的TensorFlow 2.0(tensorflow2官方教程翻译)
TensorFlow2.0 问世,Pytorch还能否撼动老大哥地位

tensorflow各版本离线下载网站

1 环境要求

CUDA10

2 安装命令

参考:https://blog.csdn.net/u011119817/article/details/88309256

pip install tensorflow==2.0.0b1                  #cpu版本
pip install tensorflow-gpu==2.0.0b1          #gpu版本

pip install tensorflow==2.0.0rc2                  #cpu版本
pip install tensorflow-gpu==2.0.0rc2          #gpu版本

3 debug

#x_train is tensor
tf.print('tf.shape(x_train):',tf.shape(x_train))
tf.print('tf.shape(y_train):',tf.shape(y_train))
tf.print(x_train)

4 mult gpu

参考:https://www.jianshu.com/p/d57595dac5a9

5.两步轻松实现在Keras中使用Tensorboard

参考:https://www.lizenghai.com/archives/5135.html

tensorboard --logdir logs

6.keras保存和恢复模型

https://www.cnblogs.com/augustone/p/10507185.html

7.BatchNormalization坑

http://www.cainiaoxueyuan.com/suanfa/11644.html

8.问题:default/dso_loader.cc:53] Could not dlopen library ‘cupti64_100.dll’; dlerror: cupti64_100.dll not found

参考:https://github.com/tensorflow/tensorflow/issues/6235
解决方法:
I have encountered this problem before. When you use CUDA 8.0,the file cupti64_80.dll lies in C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\CUPTI\libx64. I just fixed the problem by copying the dll into C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin, and the file cupti.lib in the same location into C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64. And it works!

1.复制
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\CUPTI\libx64\cupti64_80.dll

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\

2.复制
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\CUPTI\libx64\cupti.lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿尔发go

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值