深度学习数据集划分

深度学习数据集划分Python

import os
from shutil import copy
import random
file_path = 'dataset/val_masks'#源图像位置


images = os.listdir(file_path)  # iamges 列表存储了该目录下所有图像的名称
num = len(images)
print(num)
eval_index = images[:1415] #按照8:2划分训练集测试集
for img in images:
    if img in eval_index:
        image_path = file_path +'/'+img
        copy(image_path, 'dataset/train_data/masks')  # 将选中的图像复制到新路径
    else:
        image_path = file_path +"/"+ img
        copy(image_path, 'dataset/test_data/masks')
print('done')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值