《动手学深度学习》 第二天 (线性回归)

3.2 线性回归的从零开始实现

只利用NDArray和autograd来实现一个线性回归的训练。

首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。

%matplotlib inline
from IPython import display
from matplotlib import pyplot as plt
from mxnet import autograd, nd
import random
3.2.1 生成数据集

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。
设训练数据集样本数为1000,输入个数(特征数)为2。
给定随机生成的批量样本特征𝑋∈ℝ1000×2,
我们使用线性回归模型真实权重𝑤=[2,−3.4]⊤和偏差𝑏=4.2,以及一个随机噪声项𝜖来生成标签 𝑦=𝑋𝑤+𝑏+𝜖,
其中噪声项𝜖服从均值为0、标准差为0.01的正态分布。噪声代表了数据集中无意义的干扰。下面,让我们生成数据集。

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = nd.random.normal(scale=1, shape=(num_examples, num_inputs))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += nd.random.normal(scale=0.01, shape=labels.shape)

注意,features的每一行是一个长度为2的向量,而labels的每一行是一个长度为1的向量(标量)。

features[0], labels[0]

输出:

(
 [2.2122064 0.7740038]
 <NDArray 2 @cpu(0)>, 
 [6.000587]
 <NDArray 1 @cpu(0)>)

通过生成第二个特征features[:, 1]和标签 labels 的散点图,可以更直观地观察两者间的线性关系。

def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize
​
set_figsize()
plt.scatter(features[:, 1].asnumpy(), labels.asnumpy(), 1);  # 加分号只显示图

我们将上面的plt作图函数以及use_svg_display函数set_figsize函数定义在d2lzh包里。以后在作图时,我们将直接调用d2lzh.plt。由于plt在d2lzh包中是一个全局变量,我们在作图前只需要调用d2lzh.set_figsize()即可打印矢量图并设置图的尺寸。

3.2.2 读取数据集

在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。


def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = nd.array(indices[i: min(i + batch_size, num_examples)])
        yield features.take(j), labels.take(j)  # take函数根据索引返回对应元素

让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。

batch_size = 10for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break

输出:

[[-1.0929538  -0.1200345 ]
 [-1.2860336  -1.6586353 ]
 [ 0.00389364  1.1413413 ]
 [-0.51129895  0.46543437]
 [ 0.8011116  -0.5865901 ]
 [ 0.52092004  0.18693134]
 [ 0.5604595   0.96975976]
 [-0.6614866   0.09907386]
 [-0.4813231   0.5334126 ]
 [-0.21595766  2.066646  ]]
 <NDArray 10x2 @cpu(0)> 
 [ 2.409014    7.265286    0.31805784  1.6139998   7.7808976   4.617664
  2.0270698   2.5347762   1.4169512  -3.246182  ]
<NDArray 10 @cpu(0)>
3.2.3 初始化模型参数

我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。

w = nd.random.normal(scale=0.01, shape=(num_inputs, 1))
b = nd.zeros(shape=(1,))

之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们需要创建它们的梯度。

w.attach_grad()
b.attach_grad()
3.2.4 定义模型

下面是线性回归的矢量计算表达式的实现。我们使用dot函数做矩阵乘法。

def linreg(X, w, b):  # 本函数已保存在d2lzh包中方便以后使用
    return nd.dot(X, w) + b
3.2.5 定义损失函数

我们使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。

def squared_loss(y_hat, y):  
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
3.2.6 定义优化算法

以下的sgd函数实现了小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

def sgd(params, lr, batch_size):  
    for param in params:
        param[:] = param - lr * param.grad / batch_size
3.2.7 训练模型

在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数backward计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失l的形状为(10, 1)。回忆一下“自动求梯度”一节。由于变量l并不是一个标量,运行l.backward()将对l中元素求和得到新的变量,再求该变量有关模型参数的梯度。

在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
​
for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        with autograd.record():
            l = loss(net(X, w, b), y)  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().asnumpy()))

输出:

epoch 1, loss 0.040552
epoch 2, loss 0.000158
epoch 3, loss 0.000051

训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。

true_w, w

输出

([2, -3.4], 
 [[ 1.9997406]
  [-3.4000957]]
 <NDArray 2x1 @cpu(0)>)
true_b, b

输出:

(4.2, 
 [4.199303]
 <NDArray 1 @cpu(0)>)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值