Piggy-Bank
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8527 Accepted Submission(s): 4304
Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.
But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!
But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".
Sample Input
3 10 110 2 1 1 30 50 10 110 2 1 1 50 30 1 6 2 10 3 20 4
Sample Output
The minimum amount of money in the piggy-bank is 60. The minimum amount of money in the piggy-bank is 100. This is impossible.
这道题的意思是 我有几种 重量和价值不同的硬币,问一个装入重量为v的背包内,最少价值是多少。
很明显,硬币没规定数目,所以是完全背包。用opt数组表示 当重量为j的时候 他的最少价值。
因为取的最少价值,所以初始化为最大值。当重量为0的时候,价值也就为0;
状态转移方程是:
opt[j]=min(opt[j],opt[j-s[i].v]+s[i].val);
当然有些情况就不存在最小价值,比如有重量为3和4的两种硬币,但是装入硬币的重量竟然是5,所以无论怎么装都不会出现这种情况,因为这种情况的opt[j-s[i].v]等于初始的最大值,+s【i】.val后取min值不变 ,所以如果不能取到的重量,始终为初始值。
我勒个去,好困,晚上脑袋不好使了。。。orz..
#include<iostream>
using namespace std;
struct w
{
int v;
int val;
}s[510];
const int INF=10000000;
int opt[INF];
int min(int a,int b)
{
return a<b?a:b;
}
int CopmletePack(int n,int m)
{
//memset(opt,INF,sizeof(opt));
for(int i=0;i<=m;i++) opt[i]=INF;
opt[0]=0;
int i,j;
for(i=1;i<=n;i++)
for(j=s[i].v;j<=m;j++)
opt[j]=min(opt[j],opt[j-s[i].v]+s[i].val);
return opt[m];
}
int main()
{
int a,b,cas,v,i,n,ans;
cin>>cas;
while(cas--)
{
cin>>a>>b;
cin>>n;
v=b-a;
for(i=1;i<=n;i++)
cin>>s[i].val>>s[i].v;
ans=CopmletePack(n,v);
if(ans==INF)
cout<<"This is impossible."<<endl;
else
cout<<"The minimum amount of money in the piggy-bank is "<<ans<<"."<<endl;
}
return 0;
}