高代绿皮第四版课后习题1.5 T6

原题


设 t 是一个参数,

|A(t)|=\left|\begin{matrix} {​{a}_{11}}+t & {​{a}_{12}}+t & \cdots & {​{a}_{1n}}+t \\ {​{a}_{21}}+t & {​{a}_{22}}+t & \cdots & {​{a}_{2n}}+t \\ \vdots & \vdots & {} & \vdots \\ {​{a}_{n1}}+t & {​{a}_{n2}}+t & \cdots & {​{a}_{nn}}+t \\ \end{matrix} \right|

求证:

|A (t)|=|A(0)|+t\displaystyle\sum\limits_{i,j=1} ^{n}{A_{ij}}

其中 A_{ij} 是 a_{ij} 在 |A(0)| 中的代数余子式


解析


思路:

将 |A(t)| 的第一列拆分得

|A(t)|=\left|\begin{matrix} {​{a}_{11}} & {​{a}_{12}}+t & \cdots & {​{a}_{1n}}+t \\ {​{a}_{21}} & {​{a}_{22}}+t & \cdots & {​{a}_{2n}}+t \\ \vdots & \vdots & {} & \vdots \\ {​{a}_{n1}} & {​{a}_{n2}}+t & \cdots & {​{a}_{nn}}+t \\ \end{matrix} \right|+\left|\begin{matrix} t & {​{a}_{12}}+t & \cdots & {​{a}_{1n}}+t \\ t & {​{a}_{22}}+t & \cdots & {​{a}_{2n}}+t \\ \vdots & \vdots & {} & \vdots \\ t & {​{a}_{n2}}+t & \cdots & {​{a}_{nn}}+t \\ \end{matrix} \right|

将第二个行列式的第一列乘以(-1)分别加到剩下n-1列上可得

\left|\begin{matrix} t & {​{a}_{12}}+t & \cdots & {​{a}_{1n}}+t \\ t & {​{a}_{22}}+t & \cdots & {​{a}_{2n}}+t \\ \vdots & \vdots & {} & \vdots \\ t & {​{a}_{n2}}+t & \cdots & {​{a}_{nn}}+t \\ \end{matrix} \right|=\left|\begin{matrix} t & {​{a}_{12}} & \cdots & {​{a}_{1n}} \\ t & {​{a}_{22}} & \cdots & {​{a}_{2n}} \\ \vdots & \vdots & {} & \vdots \\ t & {​{a}_{n2}} & \cdots & {​{a}_{nn}} \\ \end{matrix} \right|

再将其按照第一列展开可得

\left|\begin{matrix} t & {​{a}_{12}} & \cdots & {​{a}_{1n}} \\ t & {​{a}_{22}} & \cdots & {​{a}_{2n}} \\ \vdots & \vdots & {} & \vdots \\ t & {​{a}_{n2}} & \cdots & {​{a}_{nn}} \\ \end{matrix} \right|=t\sum\limits_{i=1}^{n}{A_{i1}}

同理将上述第一个行列式进行同理拆分即可证得结论

参考解题细节:

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值