深度学习:行为识别综述

行为识别综述

E:\学习文件\行为识别\综述类
根据采用不同识别技术,人体行为识别目前主流要分为三大类∶
基于计算机视觉的行为识别、
基于传感器系统的行为识别、
基于多模态数据的行为识别。
(1)基于计算机视觉的行为识别经过多年的研究,国内外学者在计算机视觉在人体检测领域已经构建了多种框架,
主要分为基于视频的方法和基于图像的方法
涉及到关键技术目标检测技术、目标跟踪技术、序列行为分类技术、人体关键点检测技术、手势识别技术、光流分析技术、人体分割技术、属性分析技术和步态识别技术等。随着深度学习的飞速发展,这些关键技术都取得了突破性的进展,基于计算机视觉的行为识别算法已经在各个行业中得到广泛应用。

(2)基于传感器系统的行为识别在人工智能获得强力推广的当下,利用传感器进行人体行为识别已然成为智能化的一个重要分支。这种识别方法主要利用传感器和传感网络来捕捉用户行为。该方法相比利用视觉进行人体行为识别的方式,前期投入少且设备复杂性小,具有更好的空间自由性。

(3)基于多模态数据的行为识别伴随着近年来各式新型传感器的兴起,多模态人体行为识别研究逐渐成为行为识别领域内一个新的研究热点。
概括而言,基本的多模态人体行为识别流程为∶多模态数据集获取、数据预处理、特征提取与选择、人体行为识别算法。该方法与计算机视觉方法框架类型两者融合可行性高,多模态融合分析将能提升行为识别的准确性,为用户带来更好的使用体验。
请添加图片描述

研究方向

中科院

智能感知与计算研究中心网址http://www.cripac.ia.ac.cn/CN/column/column147.shtml

生物启发的智能计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值