pytorch函数参数传递不要直接传递模型参数,可直接传递字符串

本文探讨了在深度学习模型构建中,如何使用ResBlock作为基础模块。通过调整conv_relu_res_relu_block函数创建网络块,并在resblock结构中重复应用这些块。实验结果显示,参数传递方式对模型性能有一定影响。首先,直接传递已初始化的block会导致训练误差,而改为传递block的类定义则改善了训练效果。最终,模型在训练过程中损失逐渐减小,表明优化后的参数传递方法有效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在主函数中创建模型,其中conv_relu_res_relu_block()函数生成一个网络块,经过resblock()为结构体,将block为主体循环block_num次创建网络,输入通道输出通道数分别为input_channel和output_channel。先建立block,然后再将模型块传递到结构体,该种方法在参数传递的过程中会出现误差。因此不能直接传递block。

    block = conv_relu_res_relu_block()
    print(block)
    model = resblock(block=block, block_num=16,input_channel=3,output_channel=31)
    # print(model)
    if torch.cuda.is_available():
        model.cuda()
    model.eval()

打印结果为:


#block为内容为:
conv_relu_res_relu_block(
  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (relu1): ReLU(inplace=True)
  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (relu2): ReLU(inplace=True)
)

#最后训练结果为:
Epoch [1], Iter[8], Time:33.130220890, learning rate : 0.000199998, Train Loss: 9778.415039062 Test Loss: 0.000000000, testLoss: 0.000000000
Epoch [2], Iter[16], Time:29.219235897, learning rate : 0.000199995, Train Loss: 415.426544189 Test Loss: 0.000000000, testLoss: 0.000000000
Epoch [3], Iter[24], Time:29.250241280, learning rate : 0.000199993, Train Loss: 192.262710571 Test Loss: 0.000000000, testLoss: 0.000000000

Process finished with exit code 0

block 结构体为:

def conv3x3(in_channels, out_channels):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                     stride=1, padding=1, bias=True)



class conv_relu_res_relu_block(nn.Module):
    def __init__(self):
        super(conv_relu_res_relu_block, self).__init__()
        self.conv1 = conv3x3(64, 64)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(64, 64)
        self.relu2 = nn.ReLU(inplace=True)

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.relu1(out)
        out = self.conv2(out)
        out = torch.add(out,residual) 
        out = self.relu2(out)
        return out


class resblock(nn.Module):
    def __init__(self, block, block_num, input_channel, output_channel):
        super(resblock, self).__init__()
        self.in_channels = input_channel
        self.out_channels = output_channel
        self.input_conv = conv3x3(self.in_channels, out_channels=64)  
        self.conv_seq = self.make_layer(block, block_num)
        self.conv = conv3x3(64, 64)
        self.relu = nn.ReLU(inplace=True)
        self.output_conv = conv3x3(in_channels=64,  out_channels=self.out_channels)
        
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n=m.kernel_size[0]*m.kernel_size[1]*m.out_channels
                m.weight.data.normal_(0,sqrt(2./n))# the devide  2./n  carefully  
                
    def make_layer(self,block,num_layers):
        layers = []
        for i in range(num_layers):
            layers.append(block) # 在该过程传入的是已经定义的模型
        return nn.Sequential(*layers)   
    
    def forward(self, x):
        out = self.input_conv(x)
        residual = out
        out = self.conv_seq(out)
        out = self.conv(out)
        out = torch.add(out,residual)  
        out = self.relu(out)
        out = self.output_conv(out)
        return out

我们将主函数改为:

    cudnn.benchmark = True

    block = conv_relu_res_relu_block
    print(block)
    model = resblock(block=block, block_num=16,input_channel=3,output_channel=31)
    # print(model)
    if torch.cuda.is_available():
        model.cuda()
    model.eval()

将block创建时的“()”去掉,因此传递的参数为class型,而没有真正创建好模型。同样的在定义resblock()时要用到block()。

<class 'resblock.conv_relu_res_relu_block'>


Epoch [1], Iter[8], Time:31.917398214, learning rate : 0.000199998, Train Loss: 277.220520020 Test Loss: 0.000000000, testLoss: 0.000000000
Epoch [2], Iter[16], Time:28.568632841, learning rate : 0.000199995, Train Loss: 8.912072182 Test Loss: 0.000000000, testLoss: 0.000000000
Epoch [3], Iter[24], Time:28.751415253, learning rate : 0.000199993, Train Loss: 2.755993366 Test Loss: 0.000000000, testLoss: 0.000000000

Process finished with exit code 0
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值