《环境感知方案:探索未来智能世界的关键技术》
一、环境感知方案的研究现状
(一)机器人领域的环境感知
在机器人领域,环境感知算法发展经历了多个阶段。SLAM 算法自 1986 年展开,经典阶段以 EKF SLAM、FastSLAM 等基于概率方法解决问题;算法分析阶段研究系统基本性质,如可观测性、收敛性和一致性,此阶段出现了多种改进算法,如 GmAPPing 改进滤波算法、KartoSLAM 等采用图优化方法提高系统性能,同时视觉 SLAM 也逐渐成为研究热点,按前端特征点分为稀疏法、半稠密法及稠密法。
(二)农业领域的环境感知
农业领域中,农业轮式机器人三维环境感知技术发展迅速。其现状是二维环境感知在某些场景无法满足需求,而三维环境感知技术能更好地应对复杂环境挑战。关键技术包括基于激光雷达、视觉传感器和多传感器融合的感知技术。例如,车载多线激光雷达在农业领域应用越来越常见,如获取枸杞种植园作物信息。但目前仍面临感知效果瓶颈、缺乏评判标准、应用成本高等问题。
(三)智能网联汽车领域的环境感知
智能网联汽车领域,环境感知技术至关重要。它是实现自动驾驶的第一步,利用视觉传感器、超声波雷达、毫米波雷达、激光雷达及 V2X 通信技术等获取环境信息,为车辆提供决策依据。其背景是汽车新四化带来的技术变革,智能网联汽车需具备复杂环境感知等功能。传感器在其中发挥关键作用,不同传感器有不同的适用场景和功能,如视觉传感器多用于特征感知和交通检测,超声波雷达适用于泊车,毫米波雷达和激光雷达用于不同距离的目标检测。
二、先进的环境感知技术
(一)无人机的环境感知技术
华科尔推出的 R1000 RTK 无人机在环境感知方面表现出色。它搭载先进设计的激光雷达装置,可实现全向避障,水平 360 度及上方 90 度的避障范围,最大可感知距离为 40 米。相比传统的双目视觉方案,激光雷达在避障上具有白天晚上都能用、精度更高、更稳定可靠的优势。R1000 RTK 从 6 轴的冗余飞行结构变为 4 轴的简单结构,轴距缩短约 12%,折叠后的体积只有上代产品的四分之三,起飞重量 7.8kg,较上代减轻 22%,防护等级为 IP54 防尘防水。该无人机由四枚 180rpm/V 的大电机和 80A 电调提供动力,输出强劲,最高负载可达 8KG,抗风能力达到 17m/s,空载续航时长可以达到 54 分钟。标配 RTK、30 倍光变相机,可录制 4K 30 帧高清视频,云台和任务设备均采用快拆设计,可选配 35 倍微光夜视相机和双光相机,搭载设备方面支持催泪弹和烟雾弹发射器、喊话器、抛投器以及探照灯挂载。飞控支持双磁罗盘互为备份,采用动力信号冗余设计,通过专用 APP 可实现智能伴飞、航点飞行、自动精准复拍等功能,图传采用 2.4/5.8 GHz 双频通信远距离传输系统,支持 LTE 备份链路。
(二)自动驾驶汽车的环境感知技术
自动驾驶汽车的感知系统以多种传感器的数据与高精度地图的信息作为输入,对周围环境精确感知。传感器主要有激光雷达、相机、毫米波雷达三类。感知系统的输出包括障碍物的位置、形状、类别及速度信息,以及对特殊场景的语义理解。例如,通过三球定位原理实现卫星导航,采用差分 GPS 技术提高定位精度。多传感器深度融合是关键技术,包括相机内参标定、激光雷达到相机的外参标定、毫米波雷达到 GPS 的外参标定等,将不同传感器的数据标定到同一个坐标系里。车载感知系统架构先进行时间同步,然后以帧为基础进行检测、分割、分类等计算,最后利用多帧信息进行多目标跟踪输出结果。自动驾驶汽车靠 LIDAR(激光雷达)识别道路,能够识别行人、精确感知车道线方向、识别前方车辆及限速标志,控制自车车速。同时,自动驾驶汽车还能智能识别交通信号,通过图像采集、预处理、目标检测、分类和决策输出等步骤,实现对交通标志、信号灯等的准确识别,应用场景包括红绿灯识别、标志牌识别、车道线识别、障碍物检测和路况感知等,未来发展趋势是感知精度不断提高、实时性持续增强、多模态融合应用、智能决策更加优化以及与基础设施深度融合。
(三)无人驾驶汽车的感知技术
无人驾驶汽车的传感系统由多种传感器组成,包括雷达、摄像头、激光雷达等,用于感知周围环境。环境感知技术主要包括对道路、车辆、行人等目标的检测与识别,多传感器融合技术可提高感知准确性和可靠性。定位与导航技术通常结合全球导航卫星系统(GNSS)、惯性测量单元(IMU)、高精度地图等,实现车辆精确定位,并结合路径规划算法提供最优行驶路径。决策与控制技术基于环境感知和定位导航信息,通过复杂算法和模型做出安全、合理的行驶决策,并精准执行转向、加速、制动等动作。车辆系统集成需要将传感、决策、控制等子系统高度协调融合,车载计算平台负责接收各类传感信息进行数据融合和决策分析。无人驾驶汽车的安全性和可靠性至关重要,需要在技术层面确保各子系统安全性和鲁棒性,制定完善法规标准。未来,无人驾驶汽车感知技术将进一步提升,实现更加精准可靠的环境感知和目标检测,定位导航技术将进一步优化,决策控制技术