1. 引言
我们介绍了我们的第一代推理模型 DeepSeek-R1-Zero 和 DeepSeek-R1。 DeepSeek-R1-Zero 是一种通过大规模强化学习 (RL) 训练的模型,没有监督微调 (SFT) 作为初步步骤,在推理方面表现出了卓越的性能。 随着 RL 的出现,DeepSeek-R1-Zero 自然而然地出现了许多强大而有趣的推理行为。 然而,DeepSeek-R1-Zero 遇到了无休止的重复、可读性差和语言混合等挑战。为了解决这些问题并进一步提高推理性能, 我们介绍了 DeepSeek-R1,它在 RL 之前整合了冷启动数据。 DeepSeek-R1 在数学、代码和推理任务方面的性能可与 OpenAI-o1 相媲美。 为了支持研究社区,我们开源了 DeepSeek-R1-Zero、DeepSeek-R1 以及基于 Llama 和 Qwen 从 DeepSeek-R1 提炼出来的六个密集模型。DeepSeek-R1-Distill-Qwen-32B 在各种基准测试中都优于 OpenAI-o1-mini,为密集模型实现了新的先进结果。
注意:在本地运行 DeepSeek-R1 系列模型之前,我们建议您查看使用建议部分。
2. 模型概述
训练后:在基础模型上进行大规模强化学习
-
我们直接将强化学习 (RL) 应用于基础模型,而不依赖监督微调 (SFT) 作为初步步骤。这种方法允许模型探索解决复杂问题的思维链 (CoT),从而开发 DeepSeek-R1-Zero。DeepSeek-R1-Zero 展示了自我验证、反射和生成长 CoT 等功能,标志着研究界的一个重要里程碑。值得注意的是,这是第一项公开研究,验证了 LLM 的推理能力可以纯粹通过 RL 来激励,而无需 SFT。这一突破为该领域的未来发展铺平了道路。
-
我们介绍了开发 DeepSeek-R1 的管道。该管道包含两个 RL 阶段,旨在发现改进的推理模式并与人类偏好保持一致,以及两个 SFT 阶段,作为模型推理和非推理能力的种子。 我们相信,该管道将通过创建更好的模型使行业受益。
蒸馏:较小的模型也可以很强大
- 我们证明,较大模型的推理模式可以提炼成较小的模型,与通过 RL 在小型模型上发现的推理模式相比,性能更好。开源 DeepSeek-R1 及其 API 将使研究社区在未来能够提炼出更好的更小模型。
- 使用 DeepSeek-R1 生成的推理数据,我们微调了研究界广泛使用的几个密集模型。评估结果表明,蒸馏的较小密集模型在基准上表现非常出色。我们开源了基于 Qwen2.5 和 Llama3 系列的 1.5B、7B、8B、14B、32B 和 70B 检查点给社区。
3. 模型下载
DeepSeek-R1 模型
型 | #Total Params | #Activated Params | 上下文长度 | 下载 |
---|---|---|---|---|
深度求索-R1-Zero | 671B 系列 | 编号 37B | 128K | 🤗 拥抱脸 |
深度求索-R1 | 671B 系列 | 编号 37B | 128K | 🤗 拥抱脸 |
DeepSeek-R1-Zero 和 DeepSeek-R1 基于 DeepSeek-V3-Base 进行训练。 有关模型架构的更多详细信息,请参阅 DeepSeek-V3 仓库。
DeepSeek-R1-Distill 模型
型 | 基本模型 | 下载 |
---|---|---|
DeepSeek-R1-蒸馏-Qwen-1.5B |