【Pytorch实战系列】VGG11训练FashionMNIST数据集

本文介绍了使用PyTorch实现的VGG11模型在FashionMNIST数据集上的训练过程,针对原始模型通道数过多导致训练时间过长的问题,对网络结构进行了调整。作者详细展示了数据加载、模型定义、训练步骤及性能评估结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

模型

代码

训练结果

总结


模型

代码

import torch
from torch import nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from tqdm import tqdm

# 加载数据
train_dataset = datasets.FashionMNIST(root="../datasets/", transform=transforms.Compose([transforms.ToTensor(), transforms.Resize(224)]), train=True, download=True)
test_dataset = datasets.FashionMNIST(root="../datasets/", transform=transforms.Compose([transforms.ToTensor(), transforms.Resize(224)]), train=False, download=True)
train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=False)

# 定义 VGG 网络结构
class VGG11(nn.Module):
    def __init__(self, conv_arch):
        super().__init__()
        self.conv_blks = []
        self.conv_arch = conv_arch
        self.conv_blocks()
        self.convs = nn.Sequential(*self.conv_blks)
        self.linears = nn.Sequential(nn.Flatten(),
                                     nn.Linear(128 * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
                                     nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
                                     nn.Linear(4096, 10))

    # 定义 vgg 卷积块函数
    def vgg_block(self, num_convs, in_channels, out_channels):
        layers = []
        for _ in range(num_convs):
            layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
            layers.append(nn.ReLU())
            in_channels = out_channels
        layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
        return nn.Sequential(*layers)
    
    def conv_blocks(self):
        in_channels = 1
        for num_convs, out_channels in self.conv_arch:
            self.conv_blks.append(self.vgg_block(num_convs, in_channels, out_channels))
            in_channels = out_channels

    def forward(self, x):
        x = self.convs(x)
        x = self.linears(x)
        return x


conv_arch = ((1, 16), (1, 32), (2, 64), (2, 128), (2, 128))
device = "cuda:0" if torch.cuda.is_available() else "cpu"
vgg11 = VGG11(conv_arch).to(device)
# 定义超参数
epochs = 10
lr = 1e-4
# 定义优化器
optimizer = torch.optim.Adam(vgg11.parameters(), lr = lr)
# 定义损失函数
loss_fn = nn.CrossEntropyLoss()
# 训练
for epoch in range(epochs):
    train_loss_epoch = []
    for train_data, labels in tqdm(train_dataloader):
        train_data = train_data.to(device)
        labels = labels.to(device)
        y_hat = vgg11(train_data)
        loss = loss_fn(y_hat, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss_epoch.append(loss.cpu().detach().numpy())
    
    print(f'epoch:{epoch}, train_loss:{sum(train_loss_epoch) / len(train_loss_epoch)}')
    with torch.no_grad():
        test_loss_epoch = []
        right = 0
        for test_data, labels in tqdm(test_dataloader):
            test_data = test_data.to(device)
            labels = labels.to(device)
            y_hat = vgg11(test_data)
            loss = loss_fn(y_hat, labels)
            test_loss_epoch.append(loss.cpu().detach().numpy()) 
            right += (torch.argmax(y_hat, 1) == labels).sum()
        acc = right / len(test_dataset)
        print(f'test_loss:{sum(test_loss_epoch) / len(test_loss_epoch)}, acc:{acc}')

训练结果

总结

考虑到原VGG11网络的卷积通道数太大,导致训练时间过长的问题,因此我将通道数做了除4处理。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值