项目技术介绍
旅客功能
首页:展示酒店概览,包括主要特色和服务。
个人中心:用户登录、注册及管理个人资料、查看和编辑个人信息。
预定推荐:根据协同过滤算法进行酒店预定推荐
酒店信息:提供酒店的详细信息,如位置、设施、照片和评级。
酒店查找:根据地点、价格、评级等标准搜索酒店。
评论与反馈:用户可以对酒店进行评价和提供反馈。
优惠活动:查看当前的酒店促销和折扣信息。
酒店预订:选择酒店、房间类型并进行预订。
我的订单:查看当前和历史订单状态。
在线客服:自动回复,后台设定好关键字和回复内容,用户输入关键字会自动回复。
用户可以选择入住日期和离店日期
房间类型:展示不同的房间类型和相应的价格。
酒店公告:查看最新的酒店公告和通知。
成为会员:会员预约价格不一样
酒店信息分享:信息可以分享到微博和QQ
管理员
首页:管理界面概览,包括系统状态和操作快捷入口。
个人中心:管理员登录、账户管理。
会员管理:可以管理会员信息
酒店信息管理:添加、修改或删除酒店信息。
房间预定管理:查看、处理和调整客户的房间预定。
活动管理:创建、修改和删除促销活动。
报表统计:生成销售和预订相关的统计报表。
系统管理:系统设置,如权限管理和安全设置。
房间信息管理:添加、更新或删除房间信息。
房间类型管理:管理不同类型房间的详细信息和定价。
预定订单管理:全面管理所有预定订单,包括修改和取消订单。可以修改订单状态
数据备份与还原:数据备份可以备份到本地!
后端开发采用 Python 及 Django 框架,Python 丰富的库和简洁语法可高效实现业务逻辑,Django 强大的数据库抽象层、内置功能组件等,能快速搭建稳定的后端服务。前端运用 Vue.js 构建交互界面,其组件化开发和数据驱动特性可提升用户体验
开发语言:Python
框架:flask和django
Python版本:python3.7+
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat
(Django Flask Vue Pycharm毕业设计项目 )
具体实现截图
研究方法:
1.文献分析法:在研究过程中通过图书馆数据库,和中国知网下载资料等方式搜集查阅和整理文献并通过对文献的研究形成图书馆用户行为分析情况和现所存在的问题。
2.综合研究法:需要对理论实际情况相结合进行全方面,多角度的综合分析,探索图书馆用户画像现状。
3.调查分析法:通过走访调查校内图书馆用户对图书馆的满意度,了解事物详细资料数据,并加以分析展开研究。
4.案例研究法:参考其他已完成的可视化项目或可视化平台,找到该项目或平台的关键点。掌握完成过程中的流程和问题。
开发技术详细介绍
Python 是一种高级、解释型、通用的编程语言,以简洁易读的语法和丰富的库而闻名。它具有动态类型系统和自动内存管理功能,能够极大提高开发效率。Python 的跨平台特性使其可以在 Windows、Linux、macOS 等多种操作系统上运行。
Echarts可视化框架技术
Echarts有着与众不同的特点和惊艳全场的视觉效果,Echarts有以下几种特点:
1、开源软件,并且提供了非常炫酷的图形界面,还有各种直观的数据分析图形
2、使用简单,软件本身已经封装了js,只要引用到位就会有得到完美展示
3、兼容性好,基于html5,有着良好的动画渲染效果。
4、多种数据格式无需转换直接使用,对与直接传入包括二维表,key-value表等多种格式的数据源,通过简单的设置encode属性就可以完成从数据到图形的映射,这使Mysql的数据更容易的被引用。
Django 的设计理念强调简洁、高效和可维护性,其自带的数据库抽象层,允许开发者使用 Python 代码与多种数据库进行交互,如常见的 MySQL、PostgreSQL 等,无需编写复杂的 SQL 语句,大大提高了数据库操作的便捷性。
Vue 是一款用于构建用户界面的渐进式 JavaScript 框架,它以其轻量级、易用性和灵活性在前端开发领域独树一帜。Vue 采用组件化的开发模式,开发者可以将一个复杂的页面拆分成多个可复用的组件,每个组件都有自己独立的 HTML、CSS 和 JavaScript 代码,这种封装性极大地提高了代码的可维护性和复用性。
MySQL 支持标准的 SQL 语言,使得开发者能够方便地进行数据的查询、插入、更新和删除操作。它具备强大的存储引擎,如 InnoDB 和 MyISAM,不同的存储引擎针对不同的应用场景进行了优化,InnoDB 支持事务处理、行级锁等特性,适用于对数据一致性要求较高的场景,如电商订单处理;MyISAM 则在读取性能上表现出色,适合以读操作居多的应用。
Flask是Python中一个轻量级的Web应用框架,以其简洁、扩展性强而备受开发者青睐。它不像Django那样大而全,而是提供了基本的路由、模板渲染等功能,允许开发者根据需求灵活添加组件。
在Flask中,开发者可以更加容易地定义路由,即URL到Python函数的映射,实现Web页面的动态生成。同时,Flask集成了Jinja2模板引擎,方便开发者进行前端页面的渲染[10]。
核心代码部分展示
from flask import Flask, render_template, redirect, url_for
from database import db, User # 导入db和User模型
@app.route('/')
def index():
users = User.query.all() # 执行查询获取所有顾客数据
return render_template('index.html', users=users) # 渲染模板并将顾客数据传递给模板
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy()
def create_app():
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+mysqlconnector://username:password@localhost/dbname'
db.init_app(app)
return app
系统测试
系统测试是将已经集成好的软件系统,作为基于整个计算机系统的一个元素,与计算机硬件、外设、某些支持软件、数据和人员等其他系统元素结合在一起,在实际运行环境下,对计算机系统进行一系列的组装测试和确认测试。其目的在于验证系统是否满足了需求规格的定义,找出与需求规格不符或与之矛盾的地方,从而提出更加完善的方案。系统测试是一种针对整个系统的综合性测试,涉及到系统的各个层面和功能,是保障软件质量和可靠性的关键环节。
网络爬虫方面
1、通用网络爬虫(General Purpose Web Crawler):通用网络爬虫所爬取的的目标资源在全互联网中,所爬取的目标数据巨大,对于爬取的机器性能要求非常高。简单概述,通用网络爬虫是将整个网页的内容全部爬取下来,并保存在文件中,这样并不能直接获取到我们想要的数据。同时,通用网络爬虫对于机器的要求非常高,一般只适用于大型搜索引擎之中,所以我们对通用网络爬虫不作单一考虑。
2、聚焦网络爬虫(Focused Crawer):聚焦网络爬虫是将爬取目标定位在与主题相关的页面中,与通用网络爬虫不同,聚焦网络爬虫是将网页中我们想要的特定数据进行爬取并保存到本地文件中。相对比之下,聚焦网络爬虫比较复杂,但实用性高,可将我们需要的数据进行爬取,不需要像通用网络爬虫一样进行大规模筛选,更加省时省力。也正因为硬件和精力的限制,我们此次的爬虫将选择两种爬虫进行结合使用。
网络爬虫是依靠预先设定好的规则而进行自动的抓取网络信息的过程 。网络爬虫通过解析网页,自动获取网页的数据。相较于人工去获取网页数据,无疑是要方便许多。本文使用 Python 的 Requests 库和 Beautifulsoup 库去解析链家网页,获取数据。同样是网络爬虫的一种。当然,网络爬虫也是有缺点的,它在对网页进行爬取时,可能会触发网页的反爬机制,从而导致失败。所以在编写爬虫程序的时候就要想办法绕过反爬机制,增加了工作量。而且网络爬虫必须要遵守相关法律法 规,不能够恶意的去爬取一些网站的信息。
Scrapy是一个Python编写的强大,灵活的网络爬虫框架和数据提取工具。它使用异步I/O网络库Twisted进行高效的爬取,并将提取到的数据存储到多种格式中。然而,在需要大规模爬取复杂的网站时,单机爬虫速度会受到限制。为了解决这个问题,Scrapy提供了分布式爬虫系统
源码获取详细视频演示:文章底部获取博主联系方式!!!!
需要成品,加我们的时候,记得把本页面标题截图发下我,方便查找相应的源代码和演示视频。
如果你对本设计介绍不满意 文章最下方名片联系我即可~本系统包修改时间和标题,包安装部署运行调试,就是在你的电脑上运行起来