摘要:在超大规模AI训练场景中,如何实现GPU资源的精细化调度?DeepSeek创新性地将Kubernetes的容器编排能力与Slurm的高性能计算作业调度相结合,构建出兼顾灵活性与效率的混合调度系统。本文深入解析其核心设计原理与落地实践。
一、为什么需要混合调度?
在AI研发场景中,存在两类典型工作负载:
负载类型 | 特点 | 代表场景 |
---|---|---|
在线服务 | 长期运行、弹性伸缩 | 模型API服务、实时推理 |
离线训练 | 短时高耗、强隔离需求 | 千卡级大模型训练任务 |
传统方案痛点:
-
单一使用K8s管理训练任务时,缺乏对MPI作业的原生支持
-
仅用Slurm调度难以满足微服务化部署需求
DeepSeek解法:
分层调度架构——K8s管控在线服务,Slurm调度离线训练,通过统一资源池实现动态分配。
二、核心架构设计
2.1 系统拓扑
+-----------------------+
| User Job Submission |
+----------+------------+
|
v
+----------+------------+
| Slurm Workload Manager| # 负责Batch Job调度
| (集成K8s Custom Plugin)|
+----------+------------+
|
v
+----------+------------+
| Kubernetes Master | # 管理Pod生命周期
| (扩展ResourceQuota策略)|
+----------+------------+
|
v
+----------+------------+
| GPU裸金属节点 |
| (NVIDIA MIG技术分区) |
+-----------------------+
2.2 关键组件交互
结语:Kubernetes与Slurm的深度融合,为AI算力调度提供了新范式。这种混合架构既保留了HPC领域的高效性,又继承了云原生的弹性能力,将成为下一代AI基础设施的重要支柱。
-
资源抽象层
-
通过Node Feature Discovery (NFD) 标记GPU类型(如A100-80G)
-
使用DevicePlugin 将GPU卡细分为MIG实例(例如1g.10gb)
-
-
调度决策流
# 当用户提交Slurm作业时: if job_type == "MPI训练任务": Slurm调用k8s-slurm插件 → 转换为K8s Job CRD Volcano调度器介入 → 根据Gang Scheduling策略分配整组GPU else: 直接由K8s默认调度器处理
资源抢占机制
-
定义PriorityClass实现分级抢占
apiVersion: scheduling.k8s.io/v1 kind: PriorityClass metadata: name: slurm-high-priority value: 1000000 # 训练任务优先级 preemptionPolicy: Never # 禁止被抢占
三、实战配置示例
3.1 部署Slurm Operator
# 使用Helm部署Slurm集群 helm install slurm-operator \ --set slurmdbd.enabled=true \ --set slurmctld.enabled=true \ --set slurmd.enabled=true \ slurm-operator/slurm-operator
3.2 定义混合资源配额
# quotas.yaml apiVersion: v1 kind: ResourceQuota metadata: name: gpu-quota spec: hard: requests.nvidia.com/gpu: "64" scopeSelector: matchExpressions: - operator: In scopeName: PriorityClass values: ["slurm-high-priority"] # 为Slurm任务保留专用配额
3.3 提交跨架构任务
# 提交Slurm作业(自动转换为K8s Job) sbatch -N 4 --gres=gpu:8 <<EOF #!/bin/bash srun --mpi=pmix \ python train.py --batch_size 1024 EOF # 查看资源分配状态 sinfo -o "%N %G %C" # 显示节点GPU利用率 kubectl get pods -l job-type=slurm
四、性能优化实践
4.1 通信加速方案
技术方案 延迟对比 适用场景 默认TCP协议 120μs/packet 小规模数据传输 RDMA over Converged Ethernet (RoCE) 8μs/packet 跨节点AllReduce操作 配置方法:
# 启用K8s RDMA支持 kubectl label nodes node-1 feature.node.kubernetes.io/rdma.capable=true
4.2 弹性伸缩策略
基于Prometheus指标触发自动扩缩容:
# hpa-config.yaml apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: training-job-scaler spec: scaleTargetRef: apiVersion: batch/v1 kind: Job name: resnet-training minReplicas: 4 maxReplicas: 32 metrics: - type: Pods pods: metric: name: nvidia_gpu_utilization target: type: AverageValue averageValue: 85% # GPU利用率超85%触发扩容
五、落地收益对比
指标 纯K8s方案 混合调度方案 提升幅度 作业排队时间 平均23分钟 ≤5分钟 78%↓ GPU碎片率 15%-20% <5% 75%↓ 大规模作业成功率 83% 99.6% 16%↑ 客户案例:某自动驾驶公司采用该方案后,千卡任务启动时间从1.5小时缩短至8分钟!
六、未来演进方向
-
异构资源统一调度
整合CPU/FPGA资源到同一资源池,支持更复杂workload -
AI4Scheduling
应用强化学习算法预测资源需求,实现智能超调度
相关阅读: