斯坦福CS231n - CNN for Visual Recognition(7)-lecture6梯度检查、参数更新

本文深入探讨了神经网络中的梯度检查和参数更新策略。讲解了梯度检查的重要性和方法,包括相对误差的判断、数值计算梯度的注意事项、处理不可导点的策略以及如何有效地进行检查。接着,文章详细介绍了参数更新,涵盖梯度下降的各种形式,如批量梯度下降、随机梯度下降和小批量梯度下降,以及动量和NAG更新方法,解释了它们的工作原理和优缺点。最后,强调了在学习过程中跟踪损失函数、训练和验证集准确率、权重更新比例以及激活数据和梯度分布的重要性,以监控和优化模型性能。
摘要由CSDN通过智能技术生成

本节主要介绍了神经网络梯度检查和参数更新过程

梯度检查

  梯度检查是非常重要的一个环节,就是将解析梯度和数值计算梯度进行比较。数值计算梯度时,使用中心化公式

df(x)dx=f(x+h)f(xh)2h(使)

  其中 h 在实践中近似为 1e5 。不要使用以下公式
df(x)dx=f(x+h)f(x)h(使)

  中心化公式在检查梯度的每个维度的时候,会计算两次损失函数(计算量为两倍),但梯度的近似值会准确很多。要详细理解,可对 f(x+h)f(xh) 使用泰勒展开,可以看到第一个公式的误差近似 O(h) ,第二个公式的误差近似 O(h2)
  
   使用相对误差做比较。在得到数值梯度 fn 和解析梯度 fa 之后,如何去比较呢?取绝对值 |f'af'n| 或差的平方 (f'af'n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值