互联网公司数据产品经理和数据分析师,主要有什么区别?

数据产品经理和数据分析师,是目前互联网公司的热门职位,它跟数据分析师的职责有重叠的部分,不同的地方是这个职位关注的点是数据分析的产品化。这是普通互联网公司数据产品经理的日常:
在这里插入图片描述
那数据产品经理跟互联网公司里的产品经理有什么区别呢?

在大的互联网公司,产品经理有各种细分的,有偏向功能界面设计的产品经理,这类型的产品经理关注的是产品界面的美观吸引,他们要会用Axure画各种界面按钮,最好有绘画功底,他们跟数据相关的地方在于需要通过数据反馈来改进产品界面;有偏向功能实现的产品经理,这类型的产品经理关注的是产品功能实现是否满足用户预期,效率是否够高,实现步骤是否够短,他们要求最好有技术背景,能了解开发的各种实现逻辑,他们跟数据相关的地方在于需要通过数据反馈来提高功能实现的成功率,降低崩溃率以及提高实现速度;前面两者都是属于前端的产品经理,而后端的产品经理除了帮助各个部门搭建管理平台的产品经理外,剩下的就是数据产品经理了。

从以上可以看到,产品经理有各种细分,而数据产品经理也有他不一样的要求和关注点。

这是智联上某公司数据产品经理的职位描述:

职位描述:

  1. 负责门户端、APP端数据统计产品开发及推荐算法迭代等相关工作,独立负责产品线的日常迭代工作,以数据为导向对运营结果负责。

  2. 监管全部产品核心KPI数据,可对运营团队及时输出价值数据。

  3. 负责产品上线后的数据管理和运营工作,对相关数据进行持续监控和分析,并定期对自身产品、整体行业、竞争对手等进行数据分析并评估,不断优化产品,完成产品生命周期管理。

  4. 汇报项目核心数据指标和项目进度,对产品生命周期内各项指标负责。

  5. 负责产品的持续运营,不断优化、改进、迭代,深度挖掘用户需求。

从以上描述可以看到该数据产品经理职位有三个关注点:一是数据统计后台;二是推荐系统;三是对产品数据的监控和分析。那么延伸出来该职位的要求应该是对数据要敏感,了解一定的数据挖掘算法,于是一个数学或统计学的学位会有所助益。

下图简单地从背景以及工作中打交道的人来区分数据产品经理和其他产品经理:
在这里插入图片描述
终于说到数据挖掘工程师了,在数据相关职位里,我认为数据挖掘和数据架构门槛最高,也是最能体现数据价值的职位。大部分公司在招聘数据挖掘工程师时的门槛都是数学、统计学或者计算机的硕士以上,为什么本科不行非要硕士?

大部分企业认为,只有4年的本科学习不足以理解数据挖掘相关算法的推导以及应用场景,要做好数据挖掘,除了坚实的数学和统计学基础之外,算法的代码实现也是很重要的考察地方。数据挖掘何以门槛这么高,他对企业真有那么高的价值么?如果将其应用场景搬出来便知分晓。某音乐公司A成立多年,一直以界面小清新用户体验绝佳著称,可惜多年来对音乐版权的重视程度不够,导致用户因下载不了喜欢的歌曲而频频流失。后来公司痛定思痛,决定另辟蹊径于是重金聘请了一支数据挖掘工程师团队,打造了音乐界最好的推荐系统,一下子挽回了大量用户,现在用户占有率稳居行业前三。

是的,推荐系统可以说是数据挖掘最重要的应用场景,最初来源于电商网站的浏览了该商品的用户还浏览了什么,购买了该商品的用户还购买了什么,现在发展到各种复杂的特征度提取并从各个维度来计算相关性。很多著名的数据挖掘算法,如朴素贝叶斯、神经网络、逻辑回归等,都需要扎实的统计学基础以及相关项目经验才能成熟地应用于业务实践。数据挖掘是随着大数据技术的发展而崛起的一门职业,过去由于技术的局限,很多时候只能通过抽样来选取训练数据,导致最后通过算法出来的预测概率只有60%左右,而大数据的成熟让工程师能够对接近全量的数据进行建模,导致最后出来的预测概率能达到80%甚至90%,从而更能体现数据挖掘的价值。

从职业发展角度来说,BAT是最适合做数据挖掘的地方,巨量的数据,对技术的重视甚至崇拜以及成熟的应用场景让数据挖掘工程师如鱼得水。一个硕士毕业并有1,2年工作经验的数据挖掘工程师在互联网行业能轻易拿到25K往上的月薪。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
1.想要成为一名合格的数据分析师,需要看哪些类型的书
2.数据分析师的主要工作有哪些?发展前景如何?需要掌握哪些相关知识?
3.数据分析求职,数据分析师面试指南

多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页