《HuggingFace自然语言处理详解——基于BERT中文模型的任务实战》是一本全面介绍自然语言处理(NLP)的书籍,特别侧重于使用HuggingFace工具集和BERT中文模型。这本书由李福林撰写,清华大学出版社出版,是一本很适合正在学习大模型的小伙伴,可以试试!
我已打包好这本大模型书籍了,还有AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取【保证100%免费
】。
这本书的内容分为三个主要部分,共14章:
工具集基础用例演示篇(第1~6章): 这部分详细讲解了HuggingFace工具集的基本使用方法。HuggingFace是一个广受欢迎的社区,提供了丰富的工具集,如datasets和transformers,这些都是进行自然语言处理的重要资源。
中文项目实战篇(第7~12章): 这一部分通过几个实战项目,展示了如何使用HuggingFace工具集来研发自然语言处理项目。这些项目不仅提供了实际操作的例子,还帮助读者理解自然语言处理项目的一般研发流程。
预训练模型底层原理篇(第13、14章): 这部分详细阐述了预训练模型的设计思路和计算原理,帮助读者不仅知其然,而且知其所以然。
这本书的特点在于它的全面性,不仅介绍了工具的使用方法,还包括了项目实战和底层原理的讲解。书中的语言简洁明了,代码清晰易懂,适合有PyTorch编程基础的读者阅读,也适合对自然语言处理感兴趣的读者作为参考资料。
自然语言处理是人工智能领域的一个重要分支,尤其是在谷歌提出Transformer和BERT模型之后,基于预训练模型的方法已成为该领域的主要研究方向。这本书正好为这一领域的学习和研究提供了宝贵的资源和指导。
我已打包好这本大模型书籍了,还有AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取【保证100%免费
】。