利用DeepSeek10分钟全自动批量生成电影解说内容,附sop

一、项目介绍

老铁们,就说最近deepseek真的是火到天际,我上一篇写的关于deepseek+小红书的操作方法,不小心就爆了起来,看到很多小伙伴还是无从下手,所以今天还是拆解一下一些赛道的玩法。

如果侵犯到了哪一波的利益,这是deepseek的锅,与我无关。

AI的发展,对于大多数普通人来说,不管是本地部署还是驯化属于自己的AI,都不太像是普通人能操控了的事情。所以我们还是从普通人的角度来看待这件事。

也算是抛砖引玉,让你的思维更加发散,就像当时的互联网+一样,现在变成了互联网+AI+了,也算是一场升级。

做这件事情,我们还是需要了解:AI具体是做什么的,同样根据其原有特性加上其升级后的操作,仍然碾压之前国内的所有AI.

小红书批量制作图文的那一篇文章有很多朋友感兴趣,那今天我们再分享一个类似的玩法,但却是完全不同赛道的玩法,结合Deepseek,操作起来真的是非常丝滑,毫不夸张的说:秒杀了很多同类玩家。

废话不多说,直接上干货。

在各大平台上,电影节说类账号一直都非常火爆。但由于其解说稿+视频画面操作起来真的耗时耗力,所以经常一天才生成一个视频,效率真的非常的慢。

我们如何利用deeepseek+电影解说进行创作?本期我们就以电影《小小的我》为案例,给大家出一套具体教程。

真的是最新玩法,记得点赞收藏,多次学习起来呀!

01

带你实操:

1 利用Deepseek批量生成文案内容

https://www.deepseek.com/

首先打开Deepseek的官网,登录后点击开始对话。

img

进入后,将“深度思考”和“联网搜索”这两个功能同时开启

img

接着在对话框内,填写下面这个指令,然后直接提交即可。

“我是一个电影解说UP主,我现在需要生成《小小的我》这部电影的解说文案框架,请以表格的形式输出。需要包含电影场景名称、对应电影画面名称以及对应画面的描述解说文案,过渡句也要标明,站在人性角度输出,解说文案的角色用小帅、小美等名称代替。”

img

Deepseek生成后,最终会以表格的形式发送给我们,文案生成之后,就对视频进行操作就可以了。

img

因为这个是6个月前设计的,所以追踪热点的能力还是不过关,所以我们尽量选择之前的电影进行解说,这里只是举个例子。

文案生成之后,我们对视频进行操作就可以了!

2 利用剪映进行视频剪辑

https://www.capcut.cn//

上面操作完成后,可以打开**剪映,**登录主页之后,点击“图文成片”功能

img

进入后,点击“自由编辑文案”这个按钮

img

在输入框内,将生成的解说文案和过渡句都复制粘贴上去,选择一下常用的音色,随意选择一个你喜欢的即可,之后点击生成视频

img

继续点击 “使用本地素材”, 顾名思义就是将视频素材上传到电脑,为了方便起见,也可以节省空间,我们可以直接在短视频上扒下来电影的对标视频即可,这个不会的可以私信我,交给你方法。

img

这个操作完后,系统就会根据时间线生成配音,点击导入——上传准备好的解说视频素材——拉入导轨中——右键选择“智能镜头分割”,将字幕与画面匹配后的视频切片,无用素材删除。

最后加上背景音乐,可以是电影节说音乐,也可以是你自己喜欢的音乐均可。

这些都完成后,在剪映当中选取一帧做封面即可发布。

电影解说这类的账号最大的特点就是播放量很猛,所以广告变现是很猛的。不管是站内创作者分成还是植入广告,收益都是很可观的。

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

### 使用 Deepseek 生成视频的方法 #### 准备工作 为了能够顺利使用 Deepseek AI 进行视频创作,前期准备至关重要。确保已经安装并配置好 Deepseek 的开发环境以及获取必要的 API 访问权限[^1]。 #### 创建项目结构 建立一个新的文件夹用于存放所有的资源文件和代码逻辑。建议按照如下方式组织目录: ```plaintext my_deepseek_project/ ├── assets/ # 存储音频、图片等素材 │ ├── images/ │ └── audio/ ├── scripts/ # 脚本文档保存位置 └── main.py # 主程序入口 ``` #### 编写 Python 程序调用接口 编写一段简单的Python脚本来初始化Deepseek客户端并向其发送请求来获得AI生成内容。下面是一个基本的例子: ```python from deepseek import DeepseekClient, VideoGenerationRequest def generate_video(script_text): client = DeepseekClient(api_key='your_api_key_here') request_data = VideoGenerationRequest( script=script_text, style="modern", resolution="1080p" ) response = client.generate_video(request_data) video_url = response.get('videoUrl') return video_url ``` 此函数接收一个字符串参数`script_text`,它代表要转换成视频的文字剧本;返回的是由Deepseek服务端处理完毕后的在线播放链接。 #### 提交任务与等待完成 一旦提交了创建视频的任务给服务器之后,可能需要一些时间来进行渲染操作,在这期间可以通过轮询API查询进度直到状态变为已完成。 #### 下载成品 当收到通知表明视频已准备好时,就可以下载最终产物至本地计算机上进一步编辑或直接分享出去了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值